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ABSTRACT 

The Influence of Geology and Other Environmental Factors on Stream Water Chemistry 

and Benthic Invertebrate Assemblages 

 
by 

John R. Olson, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Dr. Charles P. Hawkins 
Department: Watershed Sciences 

Catchment geology is known to influence water chemistry, which can significantly 

affect both species composition and ecosystem processes in streams. However, current 

predictions of how stream water chemistry varies with geology are limited in both scope 

and precision, and we have not adequately tested the specific mechanisms by which 

water chemistry influences stream biota. My dissertation research goals were to (1) 

develop empirical models to predict natural base-flow water chemistry from catchment 

geology and other environmental factors, (2) extend these predictions to nutrients to 

establish more realistic criteria for evaluating water quality, and (3) test the hypothesis 

that catchment geology significantly influences the composition of stream invertebrate 

assemblages by restricting weak osmoregulators from streams with low total dissolved 

solids (TDS). To meet goal 1, I first mapped geologic chemical and physical influences 

by associating rock properties with geologic map units. I then used these maps and 

other environmental factors as predictors of electrical conductivity (EC, a measure of 

TDS), acid neutralization capacity, and calcium, magnesium, and sulfate concentrations. 

The models explained 58 – 92% of the variance in these five constituents. Rock 
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chemistry was the best predictor of stream water chemistry, followed by temperature, 

precipitation and other factors. To meet goal 2, I developed empirical models predicting 

naturally occurring stream total nitrogen and total phosphorus concentrations. These 

models explained most of the spatial variation among sites in total nitrogen and 

phosphorus and produced better predictions than previous models. By determining 

upper prediction limits that incorporated model error, I demonstrated how predictions of 

nutrient concentrations could be used to set site-specific nutrient criteria and accounted 

for natural variation among sites better than regional criteria. To meet goal 3, I 

experimentally manipulated (high and low) EC in both stream-side and laboratory flow-

through microcosms and measured survival, growth, and emergence of 19 invertebrate 

taxa. Observed variation among taxa in survival between treatments predicted taxon EC 

optima estimated from field observations (r2 = 0.60). Taxa with the greatest differences 

in survival between treatments also had the highest EC optima, indicating that the 

inability to persist in low EC likely restricts the distributions of some taxa.  

 (161 pages) 
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PUBLIC ABSTRACT 

The Influence of Geology and Other Environmental Factors on Stream Water 

Chemistry and Freshwater Invertebrates  

Determining if a stream has been degraded by human activities requires knowing 

what that stream’s natural water quality and freshwater species composition would likely 

be without any alteration. However stream natural conditions vary greatly from stream to 

stream, making predicting natural conditions difficult. To determine natural stream 

conditions, I developed models to predict natural stream water chemistry at individual 

streams across the western USA. Specifically, the models predict a stream’s electrical 

conductivity (a measure of the amount of solids dissolved in water), acid neutralization 

capacity, and concentrations of calcium, magnesium, sulfate, total phosphorus, and total 

nitrogen. These models predict chemistry expected under natural conditions because 

they are based on measurements of watershed characteristics not influenced by human 

activities, such as geology, climate, soils and topography. Model predictions allow 

comparison of current water chemistry with the water chemistry expected under natural 

conditions. These comparisons can then used to determine if protection or restoration 

efforts are needed.  

To better understand how natural differences in water chemistry could affect 

freshwater species, I also ran two experiments in which I exposed a range of animals to 

waters with different amounts of dissolved solids. I found that low amounts of dissolved 

solids in streams affect the survival of some invertebrates, but not others. These 

differences in survival occurred because some animals living in dilute freshwater are 

better at maintaining the required balance between water and salts (i.e., osmoregulating) 
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than other species. Those animals with poorer survival when exposed to water with low 

dissolved solids in my experiments also did not occur in streams with low dissolved 

solids in nature.  

Combining models and experimental results showed that streams underlain by 

granite or similar rocks have low dissolved solids, causing some invertebrates to be 

restricted from these streams. These combined results explain why invertebrate 

distributions in nature are related to geology and provides insight into the basic 

ecological question of why animals live where they do. This research increases our 

understanding of both how geology influences water chemistry and how different 

invertebrates respond to water chemistry, improving our ability to predict the chemical 

and biological conditions of streams.  
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CHAPTER 1 

INTRODUCTION 

The idea that the “valley rules the stream” (Hynes 1975) is a central tenet of stream 

ecology, and catchment geology has long been recognized as a major driver of stream 

characteristics that influence aquatic biota. However, little progress has been made in 

quantifying how geology influences stream environments, how geology interacts with 

other environmental factors to produce different water chemistries, and how these 

differences in water chemistry affect organisms. Quantifying these relationships should 

improve our understanding of both the mechanisms causing these patterns between 

geology, chemistry, and biota, and the relative influence of different environmental 

factors on water chemistry. Quantifying these relationships will also allow prediction of 

reference condition stream chemistry and improve our ability to predict stream biota for 

use in bioassessment. Predictions of reference condition stream chemistry can be used 

to directly assess water quality by comparing to current conditions, to develop water 

quality criteria for monitoring, or to set goals for stream restoration.  

New threats to water quality and aquatic biota increase the need for predictions of 

both natural water chemistry and biotic responses to water chemistry changes. Some of 

the newest energy extraction processes have been linked to changes in water chemistry. 

Mountain top mining, hydraulic fracturing, and coal bed methane production have all 

been associated with increases in TDS (Pond et al. 2008, Renner 2009, U.S. 

Environmental Protection Agency (USEPA) 2004). Agriculture irrigation return flows or 

runoff can also increase TDS. These processes do not necessarily have toxic effects via 

changes in pH or increased metal concentrations, but instead can change the structure 

of the stream communities because different organisms are adapted to different TDS 

concentrations (Pond et al. 2008). Models predicting background concentrations of TDS 
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and major ions allow us to determine if stream water chemistry has been altered, and 

inform managers of potential restoration goals. Understanding how different organisms 

respond to changes in TDS is important to both predict the effects of changes in TDS on 

communities and as an indicator of a potential mechanism causing an observed change 

in community structure. Many of the components of stream communities (i.e., fish, 

macroinvertebrates, and algae) have been shown to be sensitive to changes in TDS. I 

focus on macroinvertebrates only because they are the assemblage most commonly 

used for bioassessment. 

Ecologists have long observed that catchment geology influences macroinvertebrate 

distributions. The earliest observation of this pattern was a survey of the benthic fauna of 

Scottish Highland streams by Egglishaw and Morgan (1965). They found that streams 

with total cation concentrations < 400 μeq/L underlain by granite or schist had lower 

richness and abundances than those streams with greater cation concentrations 

associated with other lithologies. Minshall and Kuehne (1969) saw similar distribution 

patterns in their study of the River Duddon. Streams in the upper part of the catchment 

had cation concentrations <245 μeq/L and lower taxonomic richness. Greater taxonomic 

richness occurred in streams in the lower portion of the catchment that had greater 

cation concentrations. The difference in assemblage structure between the upper and 

lower portions of the catchment were due to the absence of most Ephemeroptera taxa 

and Gammarus from the upper catchment. These same patterns continue to be seen in 

studies up to present. Neff and Jackson (2011) found that biota differed between 

streams on the granitic Canadian Precambrian Shield and nearby streams on 

sedimentary rocks. Shearer and Young (2011) also found geology to have a significant 

effect on the structure of the macroinvertebrate assemblage among streams in Motueka 

River catchment in New Zealand. Because of these known associations between stream 
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biota and geology, geology has been incorporated into stream classification systems like 

the European Union’s WFD System-A typology (Davy-Bowker et al. 2006) and the River 

Environment Classification system (Snelder et al. 2004). 

Many potential mechanisms have been proposed to explain the relationship between 

geology and macroinvertebrates, but they can be grouped into four general types of 

causative mechanisms (Figure 1-1). The first proposed mechanism is that water 

chemistry indirectly affects macroinvertebrates via its effect on food availability and 

quality. Water chemistry affects detritus processing rates by increased Ca 

concentrations increasing conditioning rates (Egglishaw 1968), periphyton assemblage 

abundance and composition by differences in periphyton ion and nutrient concentration 

optima (Leland and Porter 2000), and the flocculation of dissolved organic matter 

controlled by pH (Krueger and Waters 1983). Bedrock is also the primary source for all P 

in a catchment and can contribute N to streams in some circumstances (Holloway et al. 

1998). All of these effects could influence macroinvertebrates via its influence on 

quantity and quality of food resources, although food resources are also affected by 

other factors (e.g., amount of incoming radiation or allochthonous inputs). A second 

potential mechanism is a direct effect of water chemistry on macroinvertebrates via the 

osmoregulatory challenge posed by living in a dilute medium. Both Minshall and Minshall 

(1978) and Willoughby and Mappin (1988) concluded that low ion concentrations were 

having a direct and variable effect on survival of macroinvertebrate taxa in the River 

Duddon, and that differences in survival among taxa were at least partly responsible for 

the distribution patterns seen there. A third potential mechanism was suggested by 

Huryn et al. (1995, see also Wiley et al. 1997, Jin and Ward 2007) is an indirect effect of 

geology on macroinvertebrate growth rates via its influence on hydrology and stream  
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Fig. 1-1. Four potential mechanisms explaining the observed relationship 
between geology and stream macroinvertebrates. 

 

temperatures. Streams with fractured or porous underlying geology have greater 

groundwater input than streams on less porous geology. Streams with greater 

groundwater inputs have more stable hydrologic and temperature regimes. These stable 

temperature regimes can lead to warmer winter temperatures and increased growth in 

the winter months (Huryn et al. 1995, Jin and Ward 2007) and to lower summer 

temperatures with associated higher dissolve oxygen concentrations (Wiley et al. 1997). 

A fourth potential mechanism is that lithology influences stream substrates (Sable and 

Wohl 2006), which affects stream macroinvertebrates. Some lithologies produce finer 

substrates than others (e.g., sandstone or shale produces finer substrates than granite 

or basalt) and weather at different rates, creating differences in embeddedness and 

channel morphology known to affect salmonid distributions (Nelson et al. 1992, Hicks 

and Hall 2003). Although a geology – substrate – macroinvertebrate pathway has not 
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been directly demonstrated, substrate type is known to affect macroinvertebrates 

(Minshall 1984).  

Although each of these four causal mechanisms probably account for some portion 

of geology’s influence on macroinvertebrates, some of the proximal effects are more 

greatly influenced by factors other than geology. Food quality and quantity affects 

abundance and biomass of macroinvertebrates, but it may not have a strong effect on 

species richness or structure (Vinson and Hawkins 1998). Spatial variation in stream 

temperatures are mostly driven by atmospheric conditions (Caissie 2006), with 

differences in the amount of groundwater input accounting for a smaller proportion of the 

variation. Geology’s effect on channel substrate size is less than the effects of 

catchment slope and approximately equal to the effects of precipitation (Snelder et al. 

2011). The only causal path where geology is the dominant factor is via its effect on TDS 

and osmoregulation.  

My three objectives for this research were to: 1) model how geology affects TDS and 

other major ions (Ca, Mg, SO4, and Acid Neutralization Capacity - ANC), 2) leverage the 

data and methods developed to address objective one to predict natural background 

nutrient concentrations to support development of nutrient criteria, and 3) experimentally 

test if differences in TDS and ion concentrations affect macroinvertebrate fitness and 

hence their distributions. Objectives one and three examine the geology – water 

chemistry – macroinvertebrate potential causal path creating a link between geology and 

macroinvertebrates. Objective two meets a need of the regulatory community to 

establish criteria for water quality management that accounts for natural variation in 

water chemistry among streams. I address objective one (Chapter 2) by predicting 

naturally occurring concentrations of TDS (measured as Electrical Conductivity or EC) 

and other ions using empirical predictive models. I created these models by predicting 
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reference site water chemistry from catchment measures of geology and other 

environmental factors known to be related to water chemistry. Measuring the physical 

and chemical characteristics of the underlying geology required that I first create maps of 

these characteristics from geologic maps, also presented in Chapter 2. I address 

objective two (Chapter 3) by developing I models to predict TP and TN concentrations in 

individual streams. To account for model errors and allow these predictions to be used in 

setting site-specific nutrient criteria, I also develop two methods for determining 

prediction. I address objective three (Chapter 4) using an experimental approach to 

determine if long-term exposure to different levels of EC differentially affect fitness of 

several macroinvertebrate taxa. 
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CHAPTER 2 

PREDICTING NATURAL BASE-FLOW STREAM WATER CHEMISTRY IN THE 

WESTERN UNITED STATES* 

 
Abstract 

Robust predictions of stream solute concentrations expected under natural 

(reference) conditions would help establish more realistic water quality standards and 

improve stream ecological assessments. Models predicting solute concentrations from 

environmental factors would also help identify the relative importance of different factors 

that influence water chemistry. Although data are available describing the major factors 

controlling water chemistry (i.e., geology, climate, atmospheric deposition, soils, 

vegetation, topography), geologic maps do not adequately convey how rocks vary in 

their chemical and physical properties. We addressed this issue by associating rock 

chemical and physical properties with geological map units to produce continuous maps 

of % CaO, % MgO, % S, uniaxial compressive strength, and hydraulic conductivity for 

western USA lithologies. We used catchment summaries of these geologic properties 

and other environmental factors to develop multiple linear regression (LR) and random 

forest (RF) models to predict base-flow electrical conductivity (EC), acid neutralization 

capacity (ANC), Ca, Mg, and SO4. Models were derived from observations at 1414 

reference-quality streams. RF models were superior to LR models, explaining 71% of 

the variance in EC, 61% in ANC, 92% in Ca, 58% in Mg, and 74% in SO4 when 

assessed with independent observations. The Root Mean Square Error for predictions  

______________________________ 
* Coauthored by Charles P. Hawkins. Reproduced by permission of American 

Geophysical Union [Olson and Hawkins, 2012]. 
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on validation sites were all < 11% of the range of observed values. The relative 

importance of different environmental factors in predicting stream chemistry varied 

among models, but on average rock chemistry > temperature > precipitation > soil = 

atmospheric deposition > vegetation > amount of rock/water contact > topography.  

 
Introduction 

Statement of Problem 

Predictive models are needed that account for the natural spatial variation in 

ecologically important water chemistry constituents [Billett and Cresser, 1992]. Such 

models could greatly enhance the accuracy and precision of both chemical and 

biological water quality assessments [Hawkins et al., 2010]. To assess if stream water 

quality or aquatic biota are supporting designated uses, regulators must be able to 

compare existing chemical and biological conditions with an appropriate reference 

condition, i.e., a benchmark representing either a desired or near natural state. Existing 

stream conditions can be determined by sampling a stream, but determining the 

chemical or biological reference condition is a challenge even in catchments with minor 

human modifications. Because the chemical reference condition is generally unknown, 

current biological assessments ignore naturally occurring variation in water chemistry 

[Hawkins et al., 2010], even though it is known to influence the abundances and 

distributions of stream biota [Minshall and Minshall, 1978; Townsend et al., 1983]. 

Predictive water chemistry models are therefore needed to help establish appropriate 

reference conditions among 1000s of individual sites that water quality managers are 

required to assess. However, most existing water chemistry models require extensive, 

site-specific parameterization that greatly constrains their use at multiple streams. 

Furthermore, few models exist for the biologically important water chemistry constituents 
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such as total dissolved solids (TDS) and electrical conductivity (EC). Empirical models 

based on known drivers of water chemistry could provide predictions of water chemistry 

constituents needed for chemical and biological assessments across regions. 

Quantifying relationships between natural base-flow water chemistry and potential 

environmental drivers could also help resolve questions regarding the relative 

importance of these drivers in controlling natural spatial variation in stream water 

chemistry [Drever, 1997 p. 283].  

 
Background 

Many mass-balance and process-based models that predict water chemistry were 

developed in the 1980s to assess the effects of acid rain on freshwater systems (e.g., 

MAGIC [Cosby et al., 1985] and ILWAS [Goldstein et al., 1984; Gherini et al., 1985]). 

These models primarily predict temporal dynamics in water chemistry in individual 

streams, including responses to changes in chemical fluxes associated with some forms 

of human activity (e.g., atmospheric deposition in MAGIC). Although some process-

based models can predict naturally occurring concentrations and fluxes of different 

chemical constituents, these predictions rely on measured water chemistry for calibration 

and accurate estimates of human-caused inputs to streams. When water quality 

assessments are required for 1000s of streams, the costs of obtaining calibration data 

greatly limits the routine use of process-based models. Also, although the fluxes of some 

types of chemical constituents affected by human activity can be estimated with 

reasonable accuracy (e.g., atmospheric deposition or water treatment outflows), the 

fluxes associated with many types of watershed alteration are more difficult to estimate 

(e.g., non-point sources associated with dispersed land use like livestock grazing or 

novel sources like mountain top removal mining). Moreover, few process-based models 
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incorporate the effects of lithology on water chemistry, an important driver of natural 

spatial variation in water chemistry. To overcome the inherent limitations of process-

based approaches in predicting spatial variation in water chemistry, Cresser et al. [2000] 

and Smart et al. [2001] developed the empirical G-BASH model to predict water 

chemistry attributes for the River Dee in Scotland from rock geochemistry. They 

subsequently underscored the need to also account for variation in climate and 

atmospheric deposition when applying their model to other catchments [Cresser et al., 

2006]. Other empirical models have been developed to predict spatial variation in water 

chemistry across regions from land use data, but these models primarily predict water 

chemistry variation associated with differences in land use, not variation in natural 

background conditions.  

Development of models capable of predicting variation in natural water chemistry has 

been restricted because environmental attributes such as climate and geology that likely 

influence water chemistry have not been quantified at regional scales. Climate, 

topography, and vegetation data are now readily available for the entire U.S.; however 

obtaining useful data on geology, perhaps the principal driver of natural variation in 

water chemistry, presents special challenges. Geologic maps primarily depict geologic 

spatial variation by classifying the landscape into map units based on similarities in rock 

age, structure, and formative processes [USGS, 2006]. This categorization hinders the 

use of geologic maps in predicting stream chemistry in three ways. First, map units 

defined by their similarity in age or formative process may have very different chemical 

and physical properties (e.g., co-occurring limestone and sandstone). In contrast, map 

units differing in their formative process may have similar geochemical effects on 

streams (e.g., small dissolved loads in streams originating in gneiss or granite). Finally, 
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classifying map units by age or formative process does not inherently provide 

information on general chemical and physical differences among classes.  

Many approaches have been developed to predict stream ecosystem properties from 

geologic information despite the limitations of current geologic classifications. Geology is 

most often associated with either chemical or biological attributes of streams by 

classifying geology into coarse rock types and then determining which classes are 

dominant [e.g., Bricker and Rice, 1989; Davy-Bowker et al., 2006]. However such 

classification obscures continuous variability among rocks, and applying these geologic 

groupings to catchments that span multiple rock types can be problematic. Increasing 

the number of categories and mapping geologic classes at higher spatial and taxonomic 

resolutions can improve associations; but the use of many categories of data in 

predictive models would result in more complicated models with reduced degrees of 

freedom. To overcome the limitations associated with using geologic classes in 

predicting stream properties, two approaches have been proposed that extract more 

useful information from geologic maps. McCartan et al. [1998] reclassified geologic map 

units into lithogeochemical classes based on the presence of water-reactive rocks. 

Streams that differed in their solute concentrations were then associated with these new 

classes. The G-BASH model [Smart et al., 1998; Cresser et al., 2000] relies on maps of 

rock chemical content (CaO, MgO, K2O, and Na2O) to predict water chemistry. The 

maps were created by applying the average whole rock chemistry based on rock 

samples collected from individual geologic formations to an entire map unit, effectively 

converting discrete classes of rock types into a series of maps depicting geochemistry 

as continuous variables. Although these approaches can potentially be used to 

incorporate geologic information more directly into water chemistry models, they have 

only seen limited application. Because lithogeochemical maps still rely on a classification 
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scheme, they may not adequately describe the chemical variation among classes that 

results from variable amounts of different rock types within a class. Characterizations of 

geologic formations used by the G-BASH model [i.e., Smart et al., 2001] are data-

intensive and may therefore be labor- and cost-prohibitive for regional applications. Also, 

neither of these approaches addresses other rock characteristics that can affect water 

chemistry such as physical weathering rate (i.e., rock strength) and the amount of 

rock/water contact (i.e., rock hydraulic conductivity). 

Early water chemistry models predominantly focused on predicting concentrations of 

major cations and ANC because the original impetus for these models was to 

understand and predict the effects of acid deposition. Although certain taxa are sensitive 

to some specific ions (e.g., the association of mollusks with Ca), stream biota can also 

be sensitive to changes in TDS because the amount of TDS determines the osmotic 

regulatory challenge biota face. Differences in TDS, as measured by EC, have been 

shown to affect both periphyton [Leland and Porter, 2000] and macroinvertebrates 

[Minshall and Minshall, 1978]. Because of these effects on biota, TDS/EC is becoming 

an increasingly important water quality parameter in many areas faced with salinization 

threats associated with agriculture [Williams, 1987], mountain top mining [Pond et al., 

2008], oil and gas extraction processes including hydraulic fracturing [Renner, 2009] and 

coal bed methane production [USEPA, 2004]. In spite of its importance, few models 

have been developed to predict either natural background TDS/EC or changes in 

TDS/EC associated with land use changes [although see Hendershot et al., 1992 and 

Ballester et al., 2003]. An accurate estimate of a stream’s naturally occurring water 

chemistry, including TDS/EC, is a prerequisite for effectively assessing water quality and 

establishing attainable goals for restoration. 
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Objectives 

Our general objective was to model natural base-flow water chemistry in the western 

U.S. streams from catchment geology and other environmental factors. We focused on 

developing models for Ca, Mg, SO4, ANC, and EC because they are known to be 

associated with the distribution of stream macroinvertebrates [Leland and Fend, 1998; 

Minshall and Minshall, 1978], the taxonomic group most often used in biological 

assessments. We also limited this study to base-flow conditions because data on storm-

flow events and our understanding of the effects of storm-flow chemistry on biota are 

both very limited. Pursuing this objective required that we complete three tasks. We first 

needed to create maps based on the chemical and physical properties of rocks that can 

influence stream water chemistry. We then needed to create empirical models to predict 

natural base-flow stream chemistry from these chemical and physical rock properties 

along with other factors known to influence water chemistry, such as climate and soils. 

To be useful for water quality and ecological assessments, water chemistry predictions 

should be at least accurate enough to distinguish sites with high concentrations from 

low, which we assessed as having a normalized Root Mean Square Error (nRMSE) less 

than 25%. We defined nRMSE as RMSE expressed as a percentage of the range of 

observed values [Wu et al., 2011]. Finally we needed to evaluate the relative strength 

and direction of effects associated with each predictor variable to both assess the 

conceptual validity of our models [sensu Rykiel, 1996] and determine which factors most 

strongly influence water chemistry at this scale. There is generally broad agreement 

about what factors control water chemistry, but little understanding about the relative 

importance of these factors across regions [Drever, 1997]. Our work should therefore 

add to our understanding of the relative importance of different environmental factors on 

water chemistry. 
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Methods 

Geology Characterization 

We adapted the approach of Smart et al. [2001] to translate standard geologic maps 

into maps depicting chemical and physical rock properties relevant to water chemistry. 

To do so we assigned an estimate of each map unit’s chemical or physical properties to 

every occurrence of that map unit in the original geologic map. This estimate was 

calculated as the average of literature values of the respective property for each lithology 

contained within the map unit, weighted by the prevalence of each lithology within the 

map unit (step 1 of Figure 2-1). The source geologic maps we used were the Preliminary 

Integrated Geologic Map Databases for the United States [Ludington et al., 2007; 

Stoeser et al., 2007], a database of standardized and updated state geologic maps 

produced by the U.S. Geological Survey (USGS). This database includes information on 

each geologic map unit’s component lithologies, the lithologies’ relative volumetric 

importance within the map unit, and a description of the map unit’s associated geologic 

formations. Although state geologic maps are of relatively coarse resolution (1:500,000 

to 1:750,000), preliminary analysis showed that models were not improved when based 

on data from 1:100,000 scale maps.  

We characterized five attributes of each lithology based on the amount of influence 

we expected these attributes to have on water chemistry and how readily available data 

were for these attributes across a wide variety of rock types. We characterized chemical 

attributes in terms of whole rock % CaO, % MgO, and % S, because these constituents 

form the principal solutes derived from rock in most stream systems. We also 

characterized two physical attributes - rock strength, measured as uniaxial compressive 

strength (UCS), and rock hydraulic conductivity. We used UCS as a measure of rock  
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strength and susceptibility to physical weathering instead of a more direct measure such 

as tensile strength because of the greater availability of UCS data and its generally high 

correlation with tensile strength [Hobbs, 1964]. We included rock hydraulic conductivity 

because of its influence on the amount of rock/water interaction occurring within a 

catchment, with more permeable rocks having more contact over shorter time frames 

[Drever, 1997].  

We characterized geology based on the 158 different lithologies that the Geologic 

Map Database lists as occurring in the western U.S. Because some of these lithologies 

are known to vary widely in their chemical or physical attributes, we created an 

additional 56 lithologic classes based on common modifiers used in geologic unit 

descriptions to better parse physical or chemical variability within lithologies (see Table 

Figure 2-1. Diagram of work flow. 
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2-1). For example, calcareous and non-calcareous sandstones greatly differ in their 

effect on water chemistry [Hem, 1985; McCartan et al., 1998]. In these situations we 

searched the descriptions of both geologic map units and named formations within map 

units for modifiers listed in Table 2-1 to assess if the lithology within a particular geologic 

map unit should be assigned to a separate lithologic class. Descriptions of geologic 

formations were obtained through either the Lexicon of Geologic Names of the United 

States (available at http://ngmdb.usgs.gov/) or literature searches.  

We derived values for each of the five rock attributes for each of the 214 lithologic 

classes and subclasses from data obtained from the OZCHEM National Whole Rock 

Geochemistry Database (available at http://www.ga.gov.au/meta/ANZCW0703011055 

.html), Earthchem Geochemical Database (available at http://www.earthchem.org/), 

National Geochemical Database (available at http://tin.er.usgs.gov/ngdb/rock/) and 

literature searches. The information in these data sources ranged from a single sample 

for rare lithologies to over 20,000 samples for more common rock types. Because only a 

small proportion of the chemical data described sedimentary rock samples as 

calcareous or non-calcareous, we used rock % CaO to partition samples into three  

 

Table 2-1. Modifiers assigned to lithology by type (chemical or physical) 
and effect (only applicable lithologies are listed) 
Chemical  Physical 
alluvial (any coarse or fine detrital) alluvial (any coarse or fine 

detrital) 
lacustrine (sand, silt or clay) lacustrine (sand, silt or clay) 
landslide (any coarse or fine detrital) landslide (any coarse or fine 

detrital) 
eolian (sand or silt) eolian (sand or silt) 
non-calcareous (any clastic 
sedimentary) 

till (any unsorted glacial deposit) 

calcareous (any clastic sedimentary) tuff (any volcanic) 
carbonaceous (any coarse or fine 
detrital) 
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groups representing non-calcareous, partially calcareous, and calcareous sedimentary 

rocks. The three subsets of calcareous rock content were created by applying a K-

means clustering algorithm (Euclidian distance and 20 iterations) to the Ca content of 

each lithology. The group of samples with the lowest Ca content was considered to 

contain non-calcareous rocks. Our preliminary analysis showed that the partially 

calcareous and calcareous groups had similar effects on water chemistry, so these two 

groups were then lumped into a single category describing calcareous rocks. A two 

cluster algorithm was also tried, but failed to partition calcareous and non-calcareous 

rocks as effectively as the three cluster analysis. We then calculated a measure of 

central tendency for each attribute for each lithologic class. Mean values were used 

unless the data were highly skewed, in which case we used the median value. We 

assessed data as highly skewed if the skew was greater than +/- 2 times the standard 

error of skew [Cramer and Howitt, 2004]. For generalized rock classes such as 

“metamorphic” or “granitic” we used the hierarchical nature of the Geologic Map 

Databases to identify all subordinate lithologies (e.g., gneiss, schist, slate, etc. for 

metamorphic rocks) and then calculated their mean. For chemical attributes we weighted 

the means for each lithology by the number of samples of each subordinate lithology that 

occurred within the combined database and used the number of samples as an estimate 

of the prevalence of any given subordinate rock type within the general rock class. 

Because the physical characterizations generally had a much lower sample size (often 

just means reported in the literature) simple averages were used to characterize general 

rock categories. We could not characterize some lithologic classes because either they 

were extremely rare and literature values of their properties were unavailable (n= 6), or 

the lithologic class was not actually a specific rock type (e.g., mélange, water, 
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landslides) and could not be characterized (n=62). These classes were coded as no 

data so they would have no influence on the characterization of geologic map units.  

Because geologic map units were often mixtures of lithologies, the attribute values 

we derived for each lithology had to be combined to describe the combined effects of the 

different lithologies within each geologic map unit. We therefore calculated the rock 

attribute weighted averages from each component lithology within a map unit. We chose 

the weights based on the prevalence of each lithology within a map unit. Weights (see 

Table 2-2) were derived by rescaling the midpoint of each prevalence category so that 

all of the weights (except indeterminate) summed to 1. This weighted average 

characterization was then assigned to every occurrence of the geologic map unit in 

question in a GIS, producing a continuous raster for that geologic property. We then 

repeated this process for the other geologic attributes, producing separate rasters of 

rock % CaO, % MgO, % S, UCS, and hydraulic conductivity.  

 
Other Environmental Predictors of Water Chemistry 

Drever [1997] outlined five major environmental drivers of natural water chemistry: 

rock type, climate, relief, vegetation, and amount of rock/water contact. We therefore 

added characterizations of climate, relief, vegetation, and amount of rock/water contact 

to our characterization of rock type for all locations within our study area (Table 2-3). We  

 

Table 2-2. Weights used to quantify the 
prevalence of rock types within geologic map 
units 

Prevalence Description Weight
Major 30-100% of unit 0.7119
Minor 10-30% of unit 0.2311
Incidental <10% of unit 0.0570
Indeterminate 0-100% of unit 0.5000
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Table 2-3. Predictor variables used 
Type Variable Units Short Name 
Geology a Catchment mean whole rock CaO % % CaO 
 Catchment mean whole rock MgO % % MgO 
 Catchment mean whole rock S % % S 
 Catchment mean unconfined compressive 

strength 
MPa Compressive 

Strength 
 Catchment mean log geometric mean hydraulic 

conductivity 
x10-6 m/s Log Hydraulic 

Cond 
Climate b Catchment mean of mean 1971-2000 annual 

precipitation 
mm/year Mean 

Precipitation 
 Catchment mean of mean 1971-2000 annual min 

monthly precipitation 
mm/month Min Precipitation

 Catchment mean of mean 1971-2000 annual 
max monthly precipitation 

mm/month Max 
Precipitation 

 Catchment mean of mean June-Sept 1971-2000 
monthly precipitation 

mm/month Mean Summer 
Precip 

 Catchment mean of mean 1971-2000 annual 
temperature 

˚C Mean 
Temperature 

 Catchment mean of mean 1971-2000 annual min 
monthly temperature 

˚C Min 
Temperature 

 Catchment mean of mean 1971-2000 annual 
max monthly temperature 

˚C Max 
Temperature 

 Catchment mean of mean 1961-1990 first & last 
day of freeze 

day of year Day Last Freeze

 Catchment mean of mean 1961-1990 annual 
number of wet-days 

days/year Mean # Wet 
Days 

 Catchment mean of mean 1961-1990 annual 
relative humidity 

% Relative 
Humidity 

Atmospheric 
Deposition c 

Catchment mean of mean 1994-2006 annual 
precipitation-weighted mean Ca concentration 

mg/l Atmospheric Ca 

 Catchment mean of mean 1994-2006 annual 
precipitation-weighted mean Mg concentration 

mg/l Atmospheric Mg 

 Catchment mean of mean 1994-2006 annual 
precipitation-weighted mean Na concentration 

mg/l Atmospheric Na 

 Catchment mean of mean 1994-2006 annual 
precipitation-weighted mean Cl concentration 

mg/l Atmospheric Cl 

 Catchment mean of mean 1994-2006 annual 
precipitation-weighted mean SO4 concentration 

mg/l Atmospheric SO4

 Catchment mean of mean 1994-2006 annual 
precipitation-weighted mean NO3 concentration

mg/l Atmospheric NO3

 Catchment mean of mean 1994-2006 annual 
total inorganic nitrogen (TN) wet deposition 

kg/ha Atmospheric TN 

Soil d Catchment mean available water capacity fraction Soil Water Cap 
 Catchment mean bulk density g/cm3 Soil Bulk Density
 Catchment mean soil erodibility (K factor) dimensionless Soil Erodibility 
 Catchment mean organic matter content % weight Soil Organic 

Content 
 Catchment mean soil permeability inches/hr Soil Permeability
 Catchment mean soil depth m Soil Depth 
 Catchment mean water table depth m Water Table 

Depth 
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Table 2-3. Continued 
Type Variable Units Short Name 
Topography e Catchment elevation mean, min, max, and std 

deviation 
m MCE, MinCE, 

MaxCE, 
SDCE 

 Catchment elevation relief ratio dimensionless Elevation Relief 
Ratio 

 Catchment shape ratio (catchment area : length) dimensionless Catchment 
Shape 

 Catchment area km2 Catchment 
Area 

Vegetation f Catchment mean of mean 2000-2009 annual 
Enhanced Vegetation Index  

dimensionless Mean EVI 

 Catchment max of mean 2000-2009 annual 
Enhanced Vegetation Index 

dimensionless Max Mean EVI 

 Catchment mean of mean 2000-2009 annual max 
Enhanced Vegetation Index 

dimensionless Mean Max EVI 

Groundwater 
g 

Catchment mean delivery velocity m/day Mean Delivery 

 Catchment mean recharge velocity m/day Mean 
Recharge 

 Catchment mean total flux m/day Mean Total 
Flux 

 Catchment mean Base-Flow Index dimensionless Base-Flow 
Index 

Rock/Water Catchment mean % CaO / Mean Precipitation dimensionless % CaO/ 
Precipitation 

Interactions h Catchment mean % MgO / Mean Precipitation dimensionless % MgO/ 
Precipitation 

 Catchment mean % S / Mean Precipitation dimensionless % S/ 
Precipitation 

 

a. Derived using method described in section 2.1 at a grid resolution of 90 x 90 m. 
b. PRISM climate data [Daly et al., 1994], 2 x 2 km resolution grids were used for the 1961–1990 
data, and 800 x 800 m resolution grids were used for the 1971-2000 data.  
c. National Atmospheric Deposition Program National Trends Network (NADP/NTN) 2.5 x 2.5 km 
resolution grids (obtained from the NADP website http://nadp.sws.uiuc.edu/ntn/). 
d. Natural Resource Conservation Service State Soil Geographic Database (NRCS STATSGO) 
500 x 500 m resolution grids (obtained from the NRCS website 
http://soils.usda.gov/survey/geography/statsgo/). 
e. Calculated from National Elevation Database DEMs at 30 x 30 m resolution (obtained from the 
USGS website http://ned.usgs.gov/). 
f. MODIS satellite MOD13A1.V4 data collected every 16 days at 500 x 500 m resolution from 
2000-2009 [Huete et al., 2002]. These data are distributed by the Land Processes Distributed 
Active Archive Center (LP DAAC), located at USGS Earth Resources Observation and Science 
Center (http://lpdaac.usgs.gov). 
g. Velocity derived from MRI-Darcy model [Baker et al., 2003], at a 90 x 90 m resolution. Base-
Flow Index values derived from interpolation of the ratio of annual max flow to minimum flow for 
all USGS gage data in the region. 
h. Derived by dividing each rock chemistry grid by the mean precipitation grid to account for 
spatial interactions. 
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characterized climate in terms of the long-term temperature and precipitation averages 

produced by the Parameter-elevation Regression on Independent Slopes Model 

[PRISM, Daly et al., 1994]. PRISM data are produced by combining interpolations of 

point-measured meteorological values from multiple agencies with a digital elevation 

model (DEM) and other spatial data sets to account for coastal and topographic effects 

on climate. Although contemporaneous climate and water chemistry measurements are 

available, our models based on time-specific climate measurements did not perform 

better than models based on long-term averages. Because we were mainly interested in 

understanding spatial differences in base-flow water chemistry and the importance of 

environmental factors relative to one another at regional scales, for simplicity we used 

long-term climate averages as predictors in our models. We also characterized possible 

spatial interactions between geology and climate by dividing the derived grids of rock 

chemical properties (see Geology Characterization section) by the amount of 

precipitation within each grid cell. Atmospheric deposition can also be an important 

driver of stream chemistry, especially near coasts [Cresser et al., 2006] and urban areas 

[Chae et al., 2004]. We therefore calculated long-term average atmospheric wet 

deposition from data obtained from the National Atmospheric Deposition Program 

National Trends Network. Although use of soils data has been problematic in predicting 

water chemistry [Billett and Cresser, 1996; Stutter et al., 2004], we wanted to 

independently assess the effectiveness of soils data in predicting regional variation in 

water chemistry. We used the State Soil Geographic Database (STATSGO) to 

characterize soil attributes (other than chemical characteristics, which are incomplete for 

our study area). We characterized vegetation cover by calculating long-term average 

MODIS satellite Enhanced Vegetation Index (EVI) values [Huete et al., 2002] from 2000-

2009. Although EVI does not capture differences in vegetation composition or structure, 
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it is a good proxy of biomass and so might therefore be associated with differences in 

water chemistry related to varying amounts of vegetation. To characterize relief and the 

amount of rock/water contact, we calculated each catchment’s elevation, relief, area, 

and shape from a DEM. To assess the amount of rock/water contact, we also estimated 

groundwater velocities with the MRI-Darcy model [Baker et al., 2003], which applies 

Darcy’s equation within a GIS environment. The Darcy equation calculates potential 

groundwater movement from hydraulic conductivity and water table elevation head. The 

MRI-Darcy model applies the Darcy equation to each grid cell to estimate potential 

groundwater flux from hydraulic conductivity (derived from our geologic maps as 

described in Geology Characterization section) and surface slope (derived from DEMs). 

Potential groundwater flux was estimated at 100 m intervals over 6 km (based on 

observed groundwater flows in the western U.S.) in 12 directions to determine both 

discharge and recharge velocities.  

 
Water Chemistry Data and Catchment Assessments 

We used base-flow water chemistry data collected at 1487 locations across the 

western U.S. (Figure 2-2) by multiple agencies (Table 2-4) to build empirical predictive 

models. The 13 western states (approximately 3.45 x106 km2) from which we compiled 

data represent a wide diversity of climatic and geologic environments, ranging from 

boreal to sub-tropic biomes and wet to arid climates. These states also represent much 

(94%) of the lithologic diversity of the continental U.S. Because we wanted to model 

natural background chemical conditions, we used data only from sites judged by the 

source agency to have minimal human impacts within their catchments. All data were 

converted to consistent units (Table 2-5) and sample concentrations reported as below 

detection limits were set to half of the reported detection limit. Some agencies measured  
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Figure 2-2. Map of 1414 training and 73 validation sites by 
ecoregion and state. 

 

 

Table 2-4. Sources of water chemistry data 

Data Source  
# of 
sites

Years 
collected Location/contact 

Arizona Department of Environmental Quality 46 1992 - 2008 Patrice Spindler 
California Department of Fish and Game 50 2003 - 2008 Andrew Rehn 
Colorado Dept of Public Health & Environment 76 1992 - 2007 Chris Theel 
Eastern Sierra Nevada Dataset 30 1999 - 2002 Dave Herbst 
USEPA Environmental Monitoring & 

Assessment Program 
339 2000 - 2004 http://www.epa.gov/ 

emap2/ 
USGS National Water-Quality Assessment 

Program  
60 1965 - 2008 http://water.usgs.gov/ 

nawqa/ 
New Mexico Environment Department 26 1999 - 2007 Shann Stringer 
Oregon Department of Environmental Quality 71 1992 - 2002 Shannon Hubler  
US Forest Service PACFISH/INFISH Biological 

Opinion 
224 2001 - 2009 Forestry Sciences Lab, 

Logan UT 
Utah State University 401 1998 - 2003 John Olson 
US Forest Service Region 5 148 2000 - 2001 Joseph Furnish 
USGS National Water Information System 16 1973 - 1995 http://waterdata.usgs.gov/

nwis 
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Table 2-5. Summary of water chemistry training data 
Constituent Units Min Mean Max na Transformb 

EC µS/cm 7 133 1171 1391 0.20 

ANC µeq/L -110 1271 7280 1324 0.14 

Ca µeq/L 27 998 7194 796 0.25 

Mg µeq/L 9 509 7108 755 0.16 

SO4 µeq/L 2 302 9279 450 0.51 
 

a. Number of sites used for model development after removal of 
outliers and sites with high influence. 
b. Exponent used for power transformations applied to data prior 
to LR modeling only. 

 

ANC in the field, whereas others measured it in the lab. Bales et al. [2002] compared the 

results obtained from 3-5 water chemistry test kits of the same three varieties used in the 

field by these agencies against known standards and found that these fixed end-point 

field titrations were positively biased by 200-500 μeq/L due to size of the titrant drop and 

inaccurate titrant concentrations. To assess whether the field and lab methods might 

show bias relative to each other, we compared lab and field ANC estimates by 

regressing each against lab-measured Ca concentrations. The intercept for field 

measured ANCs was 230 µeq/L greater than lab measured ANCs (p < 0.00001, on 342 

field and 454 lab measurements of ANC). Slopes of the two regressions were similar 

(1.48 for field data and 1.41 for lab) but statistically different (p < 0.00001). Because the 

slopes were so similar (<5% different), we corrected field measured ANC values based 

only on the difference in the intercept.  

We used the Multi-Watershed Delineation Tool [Chinnayakanahalli, 2006] to 

delineate catchment boundaries for each water chemistry site from DEMs (step 2, Figure 

2-1). Catchment averages for all predictive variables were then calculated (step 3, 

Figure 2-1). We also calculated the coefficient of variation (CV) of each geologic variable 

as a measure of geologic heterogeneity within catchments.  
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After delineating and calculating summary statistics for each watershed, we 

screened out sites with human impacts or replicate samples. To ensure that sites 

selected by different agencies were all relatively free of human impacts, we inspected 

any site that had either high values for conductivity (>1000 µS/cm), Cl- (>250 µeq/L), 

SO4
-2 (>250 µeq/L), TP (>90 µg/L), TN (>300 µg/L) or whose catchments contained > 

5% agricultural or urban land use (assessed with the 2001 National Land Cover 

Dataset). These inspection criteria were based on both earlier reference site selection 

criteria used in the western U.S. [Herlihy et al., 2008; Herlihy and Sefneos, 2008] and 

personal experience. This inspection included examining both aerial photographs (using 

Google Earth) and maps (USGS 1:24,000 topographic maps) for any evidence of human 

impacts beyond atmospheric deposition (ranches, mines, agriculture, clear-cuts, etc.). 

We removed sites from the dataset that showed probable anthropogenic influence on 

water chemistry. For those sites that were sampled on multiple dates, we selected a 

single sampling date at random from those dates with the most complete data (i.e., 

contained estimates for the most constituents). To minimize spatial replication and 

autocorrelation within our data set, we considered samples to be from a single site if 

their catchments overlapped by > 90% and were within 1 km of one another.  

 
Modeling 

We split the data into training and validation datasets prior to modeling. Validation 

sites were chosen by first stratifying all data by level II ecoregion [CEC, 2006] and then 

randomly selecting 5% of the sites within each ecoregion that had observations for each 

constituent.  

Prior to modeling, we inspected Cleveland plots of EC and ANC for extreme values 

[Zuur et al., 2009] and examined sites with these values for potential human influences 
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as described above. If the extreme values could not be attributed to human influences 

and there were no indications that the value was due to human error (i.e., the 

measurement was consistent with other water chemistry values or other measurements 

from similar sites), then the value was retained.  

We used both multiple linear regressions (LR) and random forest (RF) regression 

[Breiman, 2001] to develop predictive models (step 4, Figure 2-1). We used both 

methods because we wanted to compare the performance of these two modeling 

approaches. RF is a non-parametric modeling approach and has been widely applied to 

a variety of classification and regression problems in genetics, bio-medical applications, 

ecology, and financial forecasting, and often provides better predictions than other 

methods [Cutler et al., 2007; Siroky, 2009]. RF is based on the concept of Classification 

and Regression Trees [CART, Breiman et al., 1984] where data are recursively 

partitioned on one of the predictor variables, such that each partition results in greater 

homogeneity of the response variable values in the resulting sub-groups relative to the 

unpartitioned data. RF extends CART by creating an ensemble of trees from 

bootstrapped samples of the data and randomly selected sets of predictor variables. 

Predictions are then made by averaging results across the entire ensemble. Model fit is 

assessed by measuring prediction error of samples not included during the tree creation, 

i.e., “out of bag” samples [for more details see Cutler et al., 2007; Siroky, 2009]. We 

developed RF models to take advantage of their abilities to automatically account for 

nonlinear relationships and interactions among predictors. We also developed LR 

models because, although often not as robust as non-parametric methods like RF, they 

can be easily used to make continuous spatial predictions. All analyses were done in the 

statistical computing environment, R.  
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To develop the LR models, we used an iterative procedure of building initial models, 

transforming data as needed, controlling collinearity, and then removing sites that were 

statistical outliers or had high influence. We used the R function stepAIC to select final 

LR models. StepAIC is an algorithm that combines both forward and backward stepwise 

selection to choose the model that minimizes the Akaike information criterion. This 

method produces models with predictive ability equal to that of models based on 

exhaustive variable selection [Murtaugh, 2009]. After developing an initial model, we 

used spread-level plots [Fox, 1997] to assess the residuals for heteroscedasticity and 

then applied the suggested power transformation to the response variable. This 

procedure both reduced the heteroscedasticity of residuals and increased the linearity of 

responses. An inspection of bivariate plots showed that only groundwater predictive 

variables needed to be transformed (log) to produce linear relationships. Collinearity was 

controlled by calculating the variance inflation factor (VIF) and iteratively removing 

predictors until all VIFs were less than 3 [Zuur et al., 2009]. Sites that were statistical 

outliers in the initial models (tested using Bonferroni outlier test) or influenced coefficient 

estimates by more than 20% were removed from the dataset prior to developing the final 

model. Only variables that were significant at the p<0.05 level were retained in the final 

models.  

We used the same datasets used to create the final LR models (with outliers 

removed) to create random forest models based on 1500 trees (as implemented by the 

R function randomForest). The use of LR to identify outliers probably improved RF 

performance because RF does not have its own diagnostic tools to assess data quality. 

We optimized the number of predictors tried at each node using the tuneRF function. 

Although RF does provide estimates of each predictor’s importance, it uses all predictors 

without any selection as in LR. Modeling with multiple correlated predictors can bias 
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importance estimates of predictors in RF models [Strobl et al., 2008]. To create the most 

parsimonious models and reduce the number of correlated predictors, we modeled 

iteratively, removing correlated or low importance predictors until a model’s out of bag 

mean square error began to increase. Prior to choosing the final RF model, we 

examined bivariate, partial-dependence plots for evidence of inconsistent relationships 

between response and predictors (i.e., three or more changes in direction of effect). 

Predictors with inconsistent relationships to the response indicate an indirect or spurious 

correlation, and these predictors were removed from the final model. 

 
Model Evaluation, Validation, and Comparison 

We evaluated model fit with the coefficient of determination (R2, also referred to as 

Nash-Sutcliffe model efficiency when applied to validation data), the absolute RMSE, 

and the nRMSE as a measure of relative accuracy. Fit was assessed for both training 

and validation data, although we used out of bag predictions (i.e., predictions from those 

trees not used in model training) to calculate pseudo R2 and RMSE for RF training data.  

We also used the equivalence testing strategy outlined in Robinson et al. [2005] to 

assess predictive accuracy, i.e., if the regression of observed on predicted values had 

an intercept = 0 and slope = 1. A more nuanced view of model performance is provided 

by separately assessing prediction bias (i.e., prediction mean is equivalent to 

observation mean, so regression intercept = 0) and similarity of individual predictions to 

their associated observations (i.e., regression slope = 1). Traditionally, tests of intercept 

and slope were made based on the null hypothesis of no difference between observed 

and modeled data (e.g., µobs = µpred). However, failure to reject this null hypothesis can 

be due to the test having insufficient power. Conversely, testing with large data sets 

might reject the null hypothesis even when the differences are not meaningful in an 
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ecological or environmental management context. Equivalence testing avoids these 

problems by reversing the null hypothesis of agreement between predictions and 

observations to a null hypothesis of difference between the two (e.g., µobs ≠ µpred). This 

switches the burden of proof on to the model [Robinson et al., 2005] and results in 

concluding either that predictions are sufficiently similar to the observations (i.e., null 

hypothesis is rejected) or there is either insufficient evidence or a true difference 

between predictions and observations (i.e., null hypothesis is not rejected). A region of 

similarity is defined by the investigator to define what constitutes “sufficiently similar”. 

Our region of similarity was 25% of the estimate for both slope and intercept, and the 

probability level we used was α = 0.05. We then performed a non-parametric bootstrap 

with the R function equiv.boot to produce 10,000 estimates of the intercept and slope 

and reported the proportions that would fall in the region of equivalence. The null 

hypothesis of nonequivalence between observed and predicted would be rejected if less 

than 5% of the bootstrap estimates fell outside of the region of equivalence.  

 
Results and Interpretation 

Selected Models and Variable Importance 

The numbers of predictors retained in LR models varied from 11 for the SO4 model 

to 16 for the ANC model (Table 2-6). The numbers of predictors retained in RF models 

varied from 7 for the SO4 model to 21 for the ANC model. All of the retained predictors 

had a consistent direction of effect for all models, except for atmospheric Cl and TN 

deposition, both of which had negative effects in the RF models and positive effects in 

the LR models.  

Most of the predictors included in the models had relative importance and directions 

of correlation consistent with expectations based on our understanding of the processes 
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Table 2-6. Model predictors in rank order of importance and direction of association 
Random Forest Model Linear Regression Model 

Predictor Direction Importancea Predictor Direction Importanceb Coefficient 
Electrical Conductivity 

% CaO + 63 % CaO + 0.31 2.68E-02 
% S + 42 Max Temperature + 0.28 3.90E-03 
Max Temperature + 41 % S + 0.20 5.49E-01 
Mean # Wet Days - 37 Mean # Wet Days - 0.18 -2.30E-03 
Mean Precipitation - 35 % CaO CV + 0.15 1.82E-01 
Soil Bulk Density + 33 Soil Bulk Density + 0.15 4.81E-01 
Soil Permeability - 33 Atmospheric Cl + 0.12 3.72E-01 
Atmospheric Mg + 32 Atmospheric SO4 + 0.12 3.05E-01 
Atmospheric Ca + 32 Soil Permeability - 0.09 -1.17E-02 
% MgO + 32 Log Hydraulic Cond + 0.09 5.53E-02 
Atmospheric SO4 + 31 Base-Flow Index + 0.05 6.29E-01 
Mean Max EVI + 30 % MgO CV + 0.04 6.76E-02 
Compressive Strength - 30 Soil Erodibility + 0.04 3.86E-01 
Min Precipitation - 29 % MgO + 0.04 7.09E-03 
Max # Wet Days - 28 Soil Depth - 0.04 -1.86E-03 
Soil Erodibility + 28 (Intercept) + 0.00 7.33E-01 
Day Last Freeze - 28     
Log Hydraulic Cond + 27     
Mean Summer Precip - 24     

ANC 
% CaO + 90 % CaO + 0.38 1.96E-02 
% S + 51 Max Temperature + 0.27 2.29E-03 
Max Temperature + 48 Soil Organic Content - 0.16 -4.14E-02 
Mean Precipitation - 39 Soil Bulk Density + 0.13 2.50E-01 
Atmospheric Cl - 35 % S + 0.12 2.09E-01 
Log Hydraulic Cond + 35 % CaO CV + 0.12 8.41E-02 
Mean # Wet Days - 34 Soil Depth - 0.11 -3.58E-03 
Soil Bulk Density + 33 Max Precipitation - 0.11 -3.14E-04 
Atmospheric Ca + 33 Soil Permeability - 0.11 -8.66E-03 
% MgO + 32 Log Hydraulic Cond + 0.10 3.91E-02 
Soil Organic Content - 31 Mean Summer Precip - 0.10 -4.39E-06 
Atm TN Deposition - 31 Mean Max EVI + 0.07 2.46E-05 
Atmospheric Mg + 31 % MgO CV + 0.06 5.28E-02 
Min Precipitation - 31 Atmospheric SO4 + 0.05 7.87E-02 
Mean Summer Precip - 31 Water Table Depth + 0.04 5.71E-02 
Soil Permeability - 30 Base-Flow Index + 0.04 2.69E-01 
Mean Temperature + 30 (Intercept) + 0.00 1.51E+00 
Soil Erodibility + 29     
Soil Depth - 26     
Compressive Strength - 25     
Mean Max EVI + 24     

 

a. RF model importance is calculated as % increase in mean squared error when predictor is 
removed. 
b. LR model importance is calculated as the absolute value of the standardized coefficients.
 
 
 
 
 
 
 
 



33 
 

 

Table 2-6. Continued 

Random Forest Model Linear Regression Model 
Predictor Direction Importance Predictor Direction Importance Coefficient

Calcium 
% CaO / Precipitation + 85 % CaO + 0.44 8.79E-02
Max Temperature + 41 Max Temperature + 0.23 8.09E-03
Mean Max EVI + 40 % S + 0.21 1.27E+00
% S / Precipitation + 40 % CaO CV + 0.20 5.93E-01
Mean # Wet Days - 38 Soil Bulk Density + 0.19 1.84E+00
Mean Summer Precip - 37 Min Precipitation - 0.15 -1.18E-02
Compressive Strength - 30 Atmospheric SO4 + 0.15 8.76E-01
Soil Bulk Density + 29 Soil Permeability - 0.11 -4.03E-02
Atmospheric SO4 + 27 Mean Max EVI + 0.07 1.09E-04
Atmospheric Ca + 25 Soil Depth - 0.07 -9.43E-03
   Atmospheric Cl + 0.06 5.29E-01
   (Intercept) + 0.00 -5.68E-01

Magnesium 
% CaO / Precipitation + 59 % CaO + 0.30 1.09E-02
% MgO / Precipitation + 39 Max Temperature + 0.26 1.71E-03
Max Temperature + 36 % S / Precipitation + 0.20 1.53E+02
% S + 35 % MgO + 0.18 1.70E-02
Mean # Wet Days - 30 Mean EVI + 0.15 4.87E-05
Atmospheric Mg + 28 Mean Precipitation - 0.14 -5.78E-05
Mean Summer Precip - 27 % CaO CV + 0.13 7.24E-02
Mean Temperature + 26 Soil Permeability - 0.12 -8.21E-03
Mean Max EVI + 24 Soil Bulk Density + 0.11 1.98E-01
% MgO CV + 19 % MgO CV + 0.11 8.42E-02
   Atmospheric Mg + 0.10 2.23E+00
   Log Hydraulic Cond + 0.10 2.91E-02
   Soil Organic Content - 0.07 -1.69E-02
   Mean Summer Precip - 0.06 -2.05E-06
   (Intercept) + 0.00 9.06E-01

Sulfate 
Mean Summer Precip - 28 % S + 0.34 6.13E-02
Mean # Wet Days - 23 Day Last Freeze - 0.29 -3.66E-04
% S / Precipitation + 22 % CaO / Precipitation + 0.21 9.73E-01
Compressive Strength - 17 Atmospheric SO4 + 0.19 3.27E-02
Soil Bulk Density + 15 Soil Bulk Density + 0.18 5.20E-02
Atmospheric SO4 + 12 % CaO CV + 0.13 1.16E-02
% CaO + 8 Soil Permeability - 0.12 -1.33E-03
   Max Mean EVI + 0.11 5.29E-06
   Atm TN Deposition + 0.10 1.01E-02
   Soil Depth - 0.10 -4.01E-04
   Catchment Shape + 0.06 2.56E-02
   (Intercept) + 0.00 1.05E+00

 

 

  



34 
 

 

determining water chemistry. Among these was the dominant role of rock chemistry as a 

source for all constituents, secondary effects of temperature on either or both 

evaporative concentration and weathering rates, and dilution effects of increasing 

precipitation. A few models (RF Ca, RF Mg, and RF SO4) were improved by using the 

rock chemistry grids weighted by precipitation, which accounted for the spatial 

interactions between rock composition and precipitation. Soil predictors were also 

included in most models, with soil bulk density being the most important soil predictor in 

seven of ten models. Higher density soils were associated with higher constituent 

concentrations, likely due to their lower gas exchange rates and increased pCO2, which 

increases carbonic acid concentrations and hence chemical weathering [Ballard, 2000]. 

Soil organic content was negatively correlated with ANC, probably a result of the 

additional organic acids or inhibition of calcite dissolution by organic compounds [Morse 

and Arvidson, 2002] associated with high soil organic content. Ca and Mg deposition 

was positively correlated with stream EC, ANC, Ca, and Mg, consistent with 

expectations associated with marine [Evans et al., 2001] and dust inputs [Likens et al., 

1996]. Positive correlations between vegetation (EVI) and stream concentrations were 

expected because of the increase in physical weathering through root action and in 

chemical weathering via increased exposure to CO2. Factors affecting rock/water contact 

had a complex relationship with constituent concentrations. Soil permeability was 

negatively correlated with concentrations, whereas concentrations were positively 

correlated with rock hydraulic conductivity and the base-flow index. These relationships 

are in general agreement with expectations of Drever [1997]. He noted that while high 

permeability in the vadose zone may reduce contact time resulting in reduced 

concentrations, low permeability bedrock may reduce the amount of water in contact 

with rock also reducing concentrations. Topography and rock strength exhibited 
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expected relationships, but were weak predictors that were selected in less than half of 

the models.  

Not all predictors performed as expected, or were clearly associated with a putative 

mechanism. The weak predictive ability of % MgO relative to % CaO in the Mg models 

was probably an artifact of our treating both dolomitic and calcareous clastic rock types 

the same and only characterizing the differences in CaO content within these rock types. 

Day of last freeze (DLF) was the strongest climatic predictor for LR SO4, and was also 

included in the RF EC model, but was negatively correlated with both constituents. 

Because DLF was negatively correlated with mean temperature (r = -0.89), we interpret 

DLF as a surrogate measure of both temperature and dilution due to snow melt. Greater 

DLFs were associated with lower constituent concentrations possibly resulting from 

cooler temperatures and greater dilution during summer months due to later snow melt. 

The importance of SO4 deposition relative to other atmospheric deposition was also 

unexpected. SO4 deposition occurred in 7 models and was the most important 

atmospheric predictor in the Ca, SO4, and LR ANC models. The positive correlation 

between ANC and atmospheric SO4 in the LR ANC model runs opposite to the 

expectation that increased acid deposition leads to decreased ANC. Other models of 

ANC in the western U.S. have not shown SO4 deposition to be a significant predictor 

[Clow et al., 2010; Nanus, 2008]. Although this relationship is possibly caused by anion 

exchange of SO4
2- for OH- [Evans et al., 2001], it is also possible that the relationship is 

not directly causal at all. Instead, the relationship might be produced by correlations of 

SO4 deposition with other confounding environmental factors. Marine deposition is one 

possible confounding factor, a possibility supported by the correlation of SO4 deposition 

with Cl deposition (r = 0.45) in marine influenced areas west of the Sierra/Cascade 
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Range. Other confounding factors are also possible (i.e., dust deposition), but we lack 

data to assess these relationships. 

We controlled for alteration of stream chemistry by land use by selecting minimally 

altered sites, but we could not control for atmospheric inputs of anthropogenic sources of 

SO4 or TN. Because our measured response for ANC and SO4 includes some amount of 

anthropogenic inputs, our empirical models of these constituents is of natural 

background plus anthropogenic inputs and include SO4 and TN deposition as predictors. 

Although anthropogenic deposition is widespread, its effects on stream chemistry 

compared with that associated with land use are small. 

 
Model Fit and Validation 

The models explained 60 – 78% of the variation in the training data (Table 2-7 and 

Figure 2-3), with nRMSEs that were all less than 10%. The RF models had slightly better 

fits to the training data than the LR models, both in terms of R2 and RMSE. Direct 

comparison of RF and LR performance based on training data penalizes RF because RF 

R2 and RMSE values were calculated from out of bag predictions. A fairer comparison of 

the relative performance of the two model techniques is given by the independent 

validation data. In these comparisons, RF models had notably better model efficiencies 

and RMSEs than LR models for all constituents except SO4. The nRMSEs for RF 

models ranged from 3 – 11%. Model efficiencies calculated from the independent 

validation dataset showed that all models had good predictive ability when applied to 

other sites in the western U.S., except for the LR models for ANC and Mg. RMSEs were 

higher for the validation than the training data in all cases except the RF Ca and SO4 

models, but all validation nRMSEs were < 15%.  
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Table 2-7. Assessment of model performance 

Model Data n R2 a RMSE nRMSE r2 b 
Equivalent 
Intercept c 

Equivalent 
Slope d 

Electrical Conductivity 
RF Tng 1390 0.78 67.3 5.8 0.79 100 100

Val 73 0.71 84.2 7.2 0.73 99.0 52.3
LR Tng 1390 0.67 80.1 6.9 0.70 100 100

Val 73 0.65 91.0 7.8 0.70 81.5 37.3
ANC 

RF Tng 1323 0.73 643.2 8.7 0.74 100 100
Val 71 0.61 797.6 10.8 0.63 99.8 49.8

LR Tng 1323 0.62 764.2 10.3 0.64 100 100
Val 71 0.32 1046.3 14.2 0.33 85.0 41.2

Calcium 
RF Tng 795 0.77 501.3 7.0 0.77 100 100

Val 41 0.92 330.9 4.6 0.94 100.0 71.1
LR Tng 795 0.67 629.1 8.8 0.65 100 99.6

Val 41 0.61 720.7 10.1 0.76 12.4 4.4
Magnesium 

RF Tng 754 0.73 368.0 5.2 0.73 100 99.3
Val 41 0.58 437.6 6.2 0.58 86.5 48.9

LR Tng 754 0.70 434.2 6.1 0.63 98.8 99.9
Val 41 0.38 532.2 7.5 0.49 68.3 23.9

Sulfate 
RF Tng 449 0.77 476.4 5.1 0.77 99.8 95.8

Val 29 0.74 334.1 3.6 0.88 61.9 0.9
LR Tng 449 0.60 883.2 9.5 0.38 36.5 22.3

Val 29 0.79 303.0 5.8 0.79 0.4 0.3
 

a. For training data, R2 was calculated as the coefficient of determination using transformed 
training data for LR and untransformed training data for RF. For validation data, R2 was 
calculated as Nash-Sutcliffe Model Efficiency using back transformed (LR) or untransformed 
(RF) validation data. 
b. Squared Pearson correlation between observations and associated model predictions. 
c. Percentage of 10,000 bootstrap simulations falling within the region of equivalence (Eq0 = 
Ŷ±25%) for the intercept = 0. 
d. Percentage of 10,000 bootstrap simulations falling within the region of equivalence (Eq1 = 
m±25%) for the slope = 1. 
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Figure 2-3. Plots of predicted vs. observed values for both training and validation data by 
constituent and modeling technique. LR predictions are back transformed. Plots are 
presented in log – log form to improve readability with the ANC plots adjusted to make all 
values positive. 
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Figure 2-3. Continued. 
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Model assessments based on equivalence tests showed even more striking 

differences between the RF and LR models. Three of the RF models showed no 

evidence of bias, i.e., the null hypothesis that the mean of predicted and observed 

values were not equivalent was rejected. For these models, more than 97.5% of the 

bootstrap sample estimates fell within the region of equivalence for the intercept. For the 

RF Mg model, the null hypothesis of µobs ≠ µpred was not rejected, but there was little sign 

of consistent bias, with 87% of the bootstrapped sample estimates falling within the 

region of equivalence. The RF SO4 model showed an underprediction bias, with 38% of 

the bootstrap sample estimates being above the region of equivalence. All of the LR 

models exhibited minor to severe underprediction bias, with 15-99% of bootstrap sample 

estimates falling above the region of equivalence. The SO4 models were the most biased 

of any of the LR or RF models. 

Although the plots of observed vs. predicted concentrations do not show a clear 

tendency to underpredict, the null hypothesis of the slopes being not equivalent to 1 was 

not rejected for any model based on validation data. RF models for all constituents 

except SO4 had 48-71% of the bootstrap estimates of slope fall within the region of 

equivalence, indicating that these models failed to meet the specification of having a 

slope within 25% of 1. In all models except LR ANC, LR Mg, and RF SO4, the estimates 

of slope fell above the region of equivalence, indicating they tended to underpredict 

concentrations at higher levels. This test may be somewhat misleading because at least 

a portion of the decrease in slope from the 1:1 line is probably caused by the effect of 

regression toward the mean. Regression toward the mean always occurs whenever two 

variables are less than perfectly correlated. When this happens, individual cases that are 

large for the observed value will be relatively less large for the predicted value, resulting 

in systematic disagreement between the two. Copas [1997] demonstrated how 
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regression toward the mean causes validation data not to plot near their predicted 

values, but to regress toward the mean of the training dataset. Although equivalence 

tests provide an objective basis for understanding a model’s potential weaknesses, they 

must be interpreted with caution, given that a portion of the deviance of slope is due to 

regression toward the mean. An estimate of what proportion of the slope’s deviance is 

due to regression toward the mean and what portion is due to model inadequacies would 

allow more informed decisions on the validity of a model. 

 
Discussion 

Comparison of Models Based on Continuous  
Geology with Previous Work 

The best assessment of the utility of our continuous characterization of geology is to 

compare the performance of our models with earlier empirical models (Table 2-8). 

Comparisons of this nature have received limited discussion in previous studies 

[although see Peterson et al., 2006], but are necessary to understand which modeling 

techniques and data provide the best predictions. We do not compare our results with 

those from process-based models because they focus on temporal dynamics instead of 

spatial variation.  

Previously developed empirical models based on land use generally have weak 

predictive power. Our models based on landscape attributes accounted for substantially 

more variation in EC than models developed by Baker et al. [2005] and Zheng et al. 

[2008], and in ANC and SO4 than the model developed by Peterson et al. [2006]. Only 

the Peterson et al. [2006] EC model performed similarly to ours. We expect that models 

that parse spatial variation based solely on land use would tend to make weak 

predictions of natural background water chemistry because of the generally weak  
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correlation between land use and underlying natural variation. The strong influence of 

anthropogenic land uses on water chemistry relative to natural variation might also 

obscure catchment response to natural variation in models based on data from both 

altered and unaltered sites. Peterson et al. also developed geostatistical models that 

included information from the spatial correlation patterns of neighboring sites, resulting in 

considerable improvement in model fit compared to their linear models (EC r2 = 0.96, 

ANC r2 = 0.90, and SO4 r
2 = 0.40). However, Peterson et al. noted that this approach is 

only practical when sites are located closer than their autocorrelation distances, 

providing limited ability to predict natural conditions across landscapes.  

Geologic classifications better characterize natural environmental variation than land 

use and often result in empirical models with better predictive ability. However, predictive 

ability of these models can vary widely when applied to different portions of the 

landscape. Models predicting ANC by Berg et al. [2005] and models predicting ANC, Ca, 

and Mg by Nedeltcheva et al. [2006a and 2006b] showed wide variation in their R2 

values when applied to areas differing in size or geology, respectively. In both cases, 

models for some portions of the landscape had performance similar to ours, but models 

of other areas were much weaker. Clow et al. [2010] developed a robust ANC model that 

is appreciably better than our ANC model. However, the ability of classified geology to 

successfully partition natural variation in the Clow et al. model may be partially due to 

their focus on an area three orders of magnitude smaller than ours containing less 

geologic heterogeneity. One of the few examples of geologic classifications applied at 

scales similar to ours are the models of annual mean dissolved SiO2 yields developed by 

Jansen et al. [2010] for 142 minimally disturbed catchments across the continental U.S. 

Their predictions based on nine rock classes and an estimate of runoff produced a 

squared Pearson correlation coefficient (r2) between observations and predictions of 
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0.89 for their training data, slightly higher than the precision of most of our models. 

Although both their empirical approach and predictors were similar to ours, it is difficult to 

directly compare their results with ours because of differences in the constituents 

examined. So although geologic classifications can be used to make effective 

predictions for small areas or for SiO2 yield, using discrete geologic classes to 

characterize natural variation appears to lack sufficient information to make predictions 

of biologically relevant constituents across large regions.  

All of these studies describing variations in lithology via classification are subject to 

the dilemma noted by Jansen et al. [2010] of either lumping lithologies too coarsely and 

oversimplifying the differences between them, or splitting lithologies too finely and 

creating a classification that is too complex to be practical. This dilemma becomes 

especially acute when trying to describe lithologies across large regions. This balance 

between resolution of how lithology is portrayed and the complexity of that portrayal is 

inherent in any classification, mandating at least some loss of information as different 

rock types are grouped together to make a usable classification. Because geologic map 

units often represent different rock types that are co-located (e.g., interbedded siliceous 

sandstone and limestone), any classification system will struggle with how to best 

represent these units [Sullivan et al., 2007]. Also, any classification that optimally 

partitions variation in rocks by one attribute (e.g., rock chemical content) will necessarily 

partition other uncorrelated attributes such as those related to physical weathering (e.g., 

rock hardness) less well. Converting geologic units into continuous measures of multiple 

chemical and physical characteristics of the rocks avoids unnecessarily grouping rocks 

together to make a useable classification and also provides a better way to describe how 

different chemical and physical properties of rock interact with each other and with other 

factors to create different environments. Describing the environment as a continuum of 
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various geologic properties instead of discrete classes should increase the precision of 

our estimates of chemical and physical attributes and thus improve our prediction of 

chemical weathering rates and resulting stream chemistries. This increased precision 

should also allow for greater understanding of how geology influences the distribution 

and diversity of biota at regional scales as seen by Anderson and Ferree [2010].  

A comparison of our results with the earlier G-BASH models based on continuous 

characterizations of geology demonstrates both the advantages of the G-BASH 

approach, and its limitations. The G-BASH model performed well when applied to 

subcatchments within the River Dee basin [Cresser et al., 2000; Smart et al., 2001], but 

application to another basin by Cresser et al. [2006] produced systematic over-

predictions. Once differences in dilution due to runoff were accounted for and the model 

re-parameterized with data from both locations, the model predicted Ca and Gran 

alkalinity with slightly more precision than our models. Although our models and the G-

BASH models both characterize geology continuously, they differ in their taxonomic and 

spatial resolution. G-BASH models were based on the measured CaO or MgO content of 

each formation mapped at 1:50,000, whereas our models used average lithology values 

for map units often consisting of multiple formations mapped at 1:250,000 or greater. 

This difference in approach occurred partly because Cresser et al. [2006] had access to 

high resolution geologic data and partly because of the practical limitations of applying 

that resolution to an area 20 times larger than the one used by Cresser et al. The other 

key difference in approaches is our explicit inclusion of other geologic and environmental 

factors in our models as opposed to the post-hoc correction for differences in 

precipitation applied by Cresser et al. [2006]. The limited amount of climatic variation 

within the study area of Cresser et al. also reduced the need to account for variations in 

temperature or vegetation. Although the G-BASH approach accounts for geologic 
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variation better than geologic classification schemes, our model demonstrates the 

importance of incorporating other geologic and environmental influences in addition to 

rock CaO and MgO content. Accounting for these additional influences allowed us to 

predict how water chemistry varies across large landscapes and also how it might vary 

with changes in temperature and precipitation expected from climate change. 

 
Model Applicability 

Model performance measures (R2, RMSE, and equivalence tests) showed that our 

predictions of natural base-flow water chemistry at independent validation sites were 

sufficiently precise and accurate to inform many stream bioassessments and restoration 

efforts. The precision of our models is probably near what is possible given the coarse 

spatial resolution of available data, the partially subjective nature of geologic maps, and 

the lack of predictors of temporal variation. The nRMSE of the best model for each 

constituent was below 11% of the observed range of values. This level of precision met 

our objective and indicates these predictions should be useful in establishing reference-

condition water chemistry values [sensu Hawkins et al., 2010], which in turn should allow 

for more accurate ecological assessments. For example, we have improved predictions 

of the species composition expected under reference conditions across streams in 

Wyoming [Hargett et al., 2007], Idaho [Cao et al., 2007], and Utah [J. Ostermiller, Utah 

DEQ, personal communication, 2008] by incorporating the predictions from our initial 

water chemistry models into biological niche models. Currently most models developed 

for biological assessments do not include water chemistry as a predictor even though it 

is known to influence the abundance and distribution of stream biota [Hawkins et al., 

2010]. Improving biological models by incorporating water chemistry predictions will thus 

allow a more refined assessment of the degree to which the species composition 
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observed at an assessed site differs from that expected under reference conditions. The 

models presented here should aid in improving the accuracy of biological assessments 

across the entire western U.S. Comparing measured water quality with expected 

background conditions should also aid in diagnosing potential sources of biological 

impairment (e.g., a site with altered biology and markedly higher EC than predicted 

implies that the altered biology may be caused by stress associated with elevated 

conductivity). Understanding the expected natural background condition is also critical to 

establishing realistic ecosystem restoration goals [Hobbs and Norton, 1996]. Although 

these models only predict mean expected conditions, an upper prediction interval could 

be calculated to incorporate prediction uncertainty in these assessments. Models like 

these that incorporate the effects of temperature on water chemistry will be useful in 

predicting how water chemistry might change at site and regional scales with changing 

climate and how these changes in water chemistry might affect stream biota. 

Transformations, coefficients, and intercepts for the LR models are listed in tables 2-5 

and 2-6, and R objects for the RF models are available from the authors. 

 
Model Limitations 

Although the precision of our models was satisfactory for many purposes, they are 

not sufficient for all (e.g., acidic deposition sensitivity). Our models also tend to 

underpredict at high levels, with slopes of observations vs. predictions greater than one. 

This tendency to underpredict was also seen in the model of dissolved SiO2 by Jansen 

et al. [2010]. This pattern of underprediction is also commonly seen in other applications 

of equivalence testing of slopes [e.g., Pokharel & Froese, 2008; Eitel et al., 2008], and 

we suspect it is at least partly caused by the regression process itself. We conclude that, 
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although we have less confidence in our predictions at high levels, the majority of our 

predictions provide an unbiased estimate of background base-flow stream chemistry. 

The remaining error in our predictions results from some combination of 

measurement error (both predictor and response variables), unaccounted for processes, 

and temporal variation. Unfortunately, our current dataset did not allow us to assess the 

magnitude of these sources of error. Although increased accuracy in measuring 

predictor variables should generally improve water chemistry predictions, the results of 

Cresser et al. [2000] do not suggest increased resolution of geochemical data will 

necessarily yield significant improvements. In spite of rock chemistry’s importance in 

determining stream chemistry, increasing resolution of two dimensional rock chemistry 

data may yield only small improvements in representing processes that occur within the 

three dimensional geologic strata underlying watersheds. Because of the importance of 

dilution on constituent concentrations, we suspect that incorporating improved temporal 

and spatial estimates of stream discharge will improve model performance once those 

estimates become available.  

Although the LR and RF SO4 models were reasonably precise, they both exhibited 

more bias than the models of other constituents, according to the equivalence tests of 

the slope and the intercept of the observations vs. predictions. Poor performance of SO4 

models relative to other constituents was also seen in other studies [Chen and Driscoll, 

2005; Peterson et al., 2006] whose authors suggest that their models lacked important 

sources, such as SO4 deposition, or sinks such as retention of SO4 in wetlands. We 

suspect that three factors may be associated with the relatively poor performance of our 

SO4 models. First, the resolution of the geologic data for formations composed of 

discontinuous beds or lenses of easily erodible gypsum is very coarse. Although the 

resolution of state geologic maps is sufficient for representing spatial variation in sources 
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of Ca and Mg, it may not be for very erodible rocks like gypsum. Characterizing very 

spatially heterogeneous deposits of such a highly reactive rock as homogenous within a 

unit would likely lead to both over- and underpredictions. Second, our models do not 

account for bacterially mediated sulfate reduction that can result in losses of sulfur either 

by precipitation as sulfides or degassing as H2S. This process can lower SO4 

concentrations below what is delivered by deposition and has been observed in 

formations in our study area such as the Fort Union Formation [Hem, 1985] and may 

account for much of the unexplained variation in the portions of our study area with 

significant amounts of wetlands. Third, uptake of SO4 by either plants in terrestrial 

environments [Likens et al., 2002] or phytoplankton in lakes or large pools [Lehman and 

Branstrator, 1994], or via adsorption by soils [Sokolova and Aledseeva, 2008] could 

influence stream water SO4 concentrations.  

 
Relative Importance of Environmental Factors 
on Stream Chemistry 

Across the multiple constituents that we modeled, we saw clear differences in the 

relative importance of different environmental factors on stream chemistry. In general, 

the order of importance of factors was: rock chemistry > temperature > precipitation > 

soil = atmospheric deposition > vegetation > rock/water contact > topography. However, 

we cannot assess the relative importance of specific predictors (e.g., the importance of 

%CaO vs. % S), because individual predictors within these categories were correlated 

with one another. The dominant effect of rock chemistry on stream chemistry is not 

surprising, especially the importance of whole rock % CaO indicative of carbonate 

weathering. Ca in rocks is the ultimate source of Ca in streams (and makes up a large 

portion of both EC and ANC), and carbonate weathering is the most important 

contributor of solutes [Drever, 1997]. The importance of whole rock % S in predicting all 
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constituents probably reflects the contributions from high solubility evaporites like CaSO4 

and MgSO4 to EC, ANC, Ca, and Mg concentrations. Similar associations between SO4 

and both Ca and Mg were seen by Brenot et al. [2007].  

The importance of temperature relative to precipitation was unexpected however. 

Although temperature is known to positively affect SiO2 weathering [Gaillardet et al., 

1999; Kump et al., 2000] and it affects mineral dissolution rates in the laboratory, 

previous field based studies have not shown a clear relationship between temperature 

and Ca, Mg, ANC, or EC [Drever, 1997; White and Blum, 1995]. The effect of 

temperature is probably obscured by its covariation with other factors that affect 

weathering, namely precipitation, evaporation, vegetation cover, and soil development. 

To understand the effect of temperature one must either control for these other factors 

statistically, or select sites such that variation in these other factors is limited [Kump et 

al., 2000]. Our modeling approach may have been better able to separate effects of 

temperature from other factors than the work of White and Blum [1995] because of its 

larger sample size and inclusion of arid sites. Although part of the effect of temperature 

on chemical concentrations is almost certainly due to evaporative concentration [White 

and Blum, 1995], we conclude that evaporation explained only part of the temperature 

effect observed because relative humidity also directly affects evaporation and was not 

selected as a predictor.  

The relatively weak relationships between stream chemistry and soils, atmospheric 

deposition, and vegetation were expected. Base-flow stream chemistry is closely 

controlled by groundwater sources [Soulsby et al., 1998], so we expected that lithology 

data would better explain base-flow chemistry than soil data. Nonetheless, we may be 

underestimating the role of soils on stream chemistry because we did not have spatially 

complete soil chemistry to include as a predictor. Atmospheric deposition can be an 
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important source of solutes in areas with limited chemical weathering [Likens et al., 

1996; Driscoll et al., 2001] or near sources of marine or anthropogenic deposition [Evans 

et al., 2001; Chae et al., 2004]. Ca deposition concentrations of 30 µeq/L or greater 

commonly occur in the desert southwest and this concentration by itself would account 

for 20% of the stream Ca concentration at over 10% of our sites. However, because acid 

deposition in the western U.S is generally both lower and more localized than in the 

eastern U.S. [Wisniewsk and Keitz, 1983], we expected atmospheric deposition to have 

limited influence in our models. Our results show a clear association between stream 

water chemistry and both natural and anthropogenic atmospheric deposition, but these 

associations were substantially smaller than the associations with chemical weathering 

and climate. However, we probably underestimated the effects of atmospheric 

deposition because we used only wet deposition data. Until spatially extensive dry 

deposition data are available, we cannot assess how important it might be in determining 

stream water chemistry. Studies comparing chemical weathering in vegetated and 

unvegetated catchments show that the presence of vegetation increases fluxes of Ca 

and Mg from basalts [Moulton et al., 2000] and SiO2 and Na from granites [Asano et al., 

2004]. Other authors examining the effect of vegetation at larger scales have shown 

either minor or mixed effects of vegetation [Drever, 1997; Jansen et al., 2010], leading 

us to similar expectations.  

We found that the amount of rock/water contact and topographic measures had the 

least influence on water chemistry. Topography is generally correlated with temperature 

and soil development [Drever, 1997; Vitousek, 1977], so incorporating these influences 

into our model directly probably minimized the association of a surrogate variable like 

topography. Topographic effects on water chemistry have been most clearly observed in 

small catchments [Johnson et al., 2000; Vitousek, 1977], whereas effects have not been 
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observed in studies of larger catchments [White and Blum, 1995]. Wolock et al. [1997] 

observed that ANC and base cation concentration varied with subsurface contact time, 

but variation in subsurface contact time dampened in catchments greater than 3 km2. 

Only 5% of our catchments were < 3 km2, which may explain the limited importance of 

variables associated with rock/water contact and topography in our models.  

Although a strictly empirical approach to modeling cannot establish causation, it can 

identify those factors that may have the most influence on water chemistry. Our 

development of multiple regression models based on data from a wide variety of 

environmental conditions allowed us to separate the influence of factors like 

temperature, precipitation, vegetation, and soils that often confound one another and 

also assess the relative importance of these factors. As increasingly accurate spatial 

estimates of factors that can potentially influence water chemistry become available 

(e.g., lithology and climate), it will become possible to incorporate them into process 

models. Such information should improve model predicative power and allow for 

increased understanding of how past land use development and future climate change 

may affect stream chemistry. 
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CHAPTER 3 

DEVELOPING SITE-SPECIFIC NUTRIENT CRITERIA FROM EMPIRICAL MODELS* 

 
Abstract 

Ecologically meaningful and scientifically defensible nutrient criteria are needed to 

protect the water quality of the Nation’s streams. To protect aquatic life uses, these 

criteria should be based on our best understanding of naturally occurring nutrient 

concentrations. Previous approaches to predicting natural background nutrient 

concentrations have relied on some form of landscape categorization (e.g., nutrient 

ecoregions) to account for natural variability among waterbodies. However, the natural 

variation within these regions is still so high that use of a single criterion would under 

protect naturally occurring low-nutrient streams and overprotect naturally occurring high-

nutrient steams. We developed Random Forest models to predict how baseflow 

concentrations of total P (TP) and total N (TN) vary among western U.S. streams in 

response to continuous spatial variation in nutrient sources, sinks, or other processes 

affecting nutrient concentrations. Both models were relatively accurate (Root Mean 

Squared Errors < 12% of the range of observations for independent validation sites) and 

made better predictions than previous models of natural nutrient concentrations. 

However, the models were not very precise (r2 = 0.46 for the TP model, and r2 = 0.23 for 

the TN model). An analysis of the sources of variation showed that our models 

accounted for a majority of the spatial variation in nutrient concentrations, and much of 

the imprecision was due to temporal or measurement variation. We applied two methods 

to determine upper prediction limits that incorporated model error and could be used as  

______________________________ 
* Coauthored by Charles P. Hawkins.  
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site-specific nutrient criteria. These site-specific nutrient criteria better accounted for 

natural variation among sites than did criteria based on regional average conditions, 

would increase protection for streams with naturally low nutrient concentrations, and 

specify more attainable conditions for those streams with naturally higher nutrient 

concentrations. 

Introduction 

Nutrient pollution of streams increases plant and microbial growth and shifts 

ecosystems toward a more eutrophic state, eventually affecting downstream lakes and 

estuaries. Nutrient pollution has increased dramatically over the last 50 years, with over 

50% of stream and 78% of coastal waters now exhibiting eutrophication (USEPA 2011). 

To prevent further harm and set standards for restoration, the Clean Water Act requires 

that criteria be established to protect the designated uses of each waterbody. Criteria 

can be in either narrative or numeric form, but the USEPA has long recommended 

numeric nutrient criteria be used to identify the level of impairment, prioritize water 

bodies for management, and set remediation goals for individual water bodies (USEPA 

2011). Where the designated use is to sustain naturally occurring biota, numeric nutrient 

criteria should be developed that protect the trophic states within which biota evolved 

(Dodds 2007). That is, nutrient criteria designed to protect biota should be based on 

naturally occurring nutrient concentrations. Even when the designated use is not the 

protection of aquatic life, understanding how a proposed criterion relates to the expected 

natural condition would inform decision makers how much a system has been altered. 

The challenge in establishing meaningful numeric nutrient criteria is in estimating the 

nutrient concentrations that should occur in streams under natural conditions, especially 

if those streams have been previously altered by human activities.  
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Several approaches have been developed to predict background nutrient conditions 

and define criteria. One approach is to base a criterion on some percentile value of the 

distribution of nutrient concentrations observed at reference sites within a region (e.g., 

75% in USEPA 2000; 86% in Suplee et al. 2007). Another is to model background 

nutrient concentrations as a function of ecoregion, runoff, and atmospheric deposition 

(for N) or in-stream loss (for P) (Smith et al. 2003). In a third approach, Dodds and 

Oakes (2004) modeled nutrient concentrations as a function of land use disturbance 

within separate ecoregions, depending on the ecoregions to control for natural variation. 

Because disturbance was used as a predictor in the model, naturally occurring 

concentrations were predicted by running the model with disturbance set to zero at 

altered sites. All of these approaches control for natural variation in nutrient 

concentrations caused by differences in geology, climate, or vegetation by spatially 

classifying sites into nutrient ecoregions that separate sites into groups with similar 

environments. However, the ability of such regionalizations to sufficiently control for 

natural variation in water chemistry and other ecosystem attributes is questionable 

(Hawkins et al. 2010).  

Even when landscape classifications are based on known environmental drivers, 

they often account for insufficient amounts of natural variation in nutrient conditions to 

allow the prediction of expected natural nutrient concentrations. Herlihy and Sifneos 

(2008) concluded that the 14 nutrient ecoregions covering the contiguous U.S. do not 

control natural variability well enough to allow establishment of regional criteria, 

specifically in the Pacific Northwest. Even within some of the finer resolution level III 

ecoregions (85 regions for the contiguous U.S.), TP and TN concentrations varied 3 fold 

or greater among reference sites (Fig. 5. in Herlihy and Sifneos 2008). Similarly, 

Cheruvelil et al. (2008) found that multiple regionalization schemes were ineffective in 
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partitioning natural variation in TP and TN among minimally disturbed lakes in Michigan. 

Robertson et al. (2006) also noted several inherent problems in accounting for variation 

with ecoregions, including the difficulty of developing a single classification that 

adequately parses natural variation of multiple chemical constituents when each 

constituent responds to a different set of processes. They also noted that ecoregions are 

often confounded with land use because human development occurs disproportionately 

in ecoregions with favorable environmental attributes. For example, if the amount of 

agriculture is correlated with natural differences in soil and vegetation type, then regions 

delineated based on soils or vegetation are likely to differ in water chemistry because of 

both differences in land use as well as variation in natural features. Identifying 

appropriate background concentrations in streams that flow across multiple regions and 

assigning criteria to such streams is also problematic (Dodds and Oakes 2004).  

Others have tried using typological or reach-level classification approaches to better 

control for natural variation in nutrient concentrations (Snelder et al. 2004, Robertson et 

al. 2006, Herlihy and Sefneos 2008). Although these typologies were more effective than 

ecoregions, nutrient concentrations still varied up to an order of magnitude within some 

classes. Because many of the environmental drivers important to water chemistry vary 

continuously (e.g., climate, topography, vegetation), any discrete classification imposed 

on these gradients must contain a certain amount of within-class variation.  

If large amounts of unexplained natural variation occur within landscape or 

waterbody classes, it is difficult to establish criteria that are both attainable and 

protective across the range of expected conditions. Any criterion chosen from across a 

large range of possible natural conditions will be under-protective for some sites and 

over-protective for others. An example of under-protection would be a site with very low 

natural nutrient concentrations, but in a highly variable region with a criterion significantly 
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higher than that site’s natural background condition. A site like this would have to be 

substantially altered before the nutrient concentrations violated the criterion and 

prompted action. Ice and Binkley (2003) describe an example of over protection in which 

the nutrient concentrations found in 3 streams draining undisturbed forest watersheds 

would exceed regional criteria, indicating that these criteria were set too low. They 

concluded that “Water quality standards will be acceptable only when they reflect what is 

physically achievable…” (Ice and Binkley 2003). Given the monetary and societal costs 

associated with developing TMDLs and restoring streams to meet them, it is critical that 

management decisions are guided by criteria that are achievable and reliable. 

Nutrient criteria should be based on the best estimates of expected natural or near 

natural conditions, but making these estimates is difficult given the complex 

environmental processes that influence nutrient concentrations. Smith et al. (2003) 

developed regression models to predict natural background nutrient concentrations, but 

because they lacked access to information on vegetation, soils, or geology, they also 

relied on ecoregions to account for all of these environmental effects. Ice and Binkley 

(2003) noted that although ecoregions explain some variation in nutrient concentrations, 

they do not account for the influence of finer-scale factors such as geology or forest 

type. Dodds and Oakes (2004) called for the consideration of spatially variable 

characteristics such as geology, slope, and drainage area to better account for natural 

variation in water chemistry within ecoregions. Recently, new spatial data describing 

environmental factors that can influence water chemistry have been produced (see 

Chapter 2). Also, new modeling techniques that account for both nonlinear and 

interacting predictors have been developed (e.g., Random Forests and Artificial Neural 

Networks). These advancements in both data and modeling provide an opportunity to 

develop models in which stream nutrient concentrations are predicted as joint functions 
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of potential nutrient sources and sinks instead of relying on spatial classifications like 

ecoregions. 

Our main objectives were to develop models to predict baseflow nutrient 

concentrations for individual stream reaches and then to identify site-specific nutrient 

criteria based on these model predictions. We first describe how we modeled site-

specific variation in naturally occurring TN and TP concentrations. We then describe two 

methods for estimating prediction error and demonstrate how these methods can be 

applied to estimate the highest probable naturally occurring nutrient concentration at a 

site, i.e., a site-specific nutrient criterion.  

 
Methods 

Nutrient concentration data 

We assembled a dataset of TP and TN concentrations from samples collected during 

baseflow conditions by multiple agencies from 823 reference condition streams across 

the western U.S. (Figure 3-1 and Table 3-1). Sample TP and TN concentrations were 

measured from unfiltered grab samples by persulfate oxidation and colorimetry (TP and 

TN) or calculated as the sum of total Kjeldahl nitrogen plus nitrate and nitrite (TN). We 

used concentrations derived from individual grab samples instead of long-term averages 

or estimates of nutrient loads despite the noisiness of this type of data (Knowlton and 

Jones 2006), because most regulatory agencies use estimates from grab samples in 

their assessment programs. Also, the number of sites with grab sample data far exceeds 

the number of sites that have the frequent, multiple measurements needed to calculate 

loads. The data from many grab samples allowed us to develop models whose scope 

included a broad range of environments. Sites were originally identified as being in 

reference condition by the sampling agency, but to ensure consistency we also screened  
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Figure 3-1. Map of 782 training and 41 validation sites by 
nutrient, ecoregion, and state. 

 

sites to verify their catchments had little to no human disturbance except for atmospheric 

deposition (see Chapter 2 for details).  

 
Table 3-1. Sources of water chemistry data 

Data Source  
# of 
sites

Years 
collected Location/contact 

Arizona Department of Environmental Quality 25 1994 - 2008 Patrice Spindler 
California Department of Fish and Game 46 2003 - 2008 Andrew Rehn 
Eastern Sierra Nevada Dataset 22 2000 - 2002 Dave Herbst 
USEPA Environmental Monitoring & 

Assessment Program 
337 2000 - 2004 http://www.epa.gov/emap

2/ 
USGS National Water-Quality Assessment 

Program  
41 1973 - 2008 http://water.usgs.gov/naw

qa/ 
New Mexico Environment Department 25 1999 - 2007 Shann Stringer 
Oregon Department of Environmental Quality 67 1992 - 2002 Shannon Hubler  
Utah State University 255 2001 - 2003 John Olson 
USGS National Water Information System 5 1981 - 1995 http://waterdata.usgs.gov
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Environmental predictors 

We used a GIS to measure spatial variation in factors potentially affecting nutrient 

concentrations among sites. These factors include direct effects associated with spatial 

variation in sources (e.g., rock P, N deposition) and sinks (e.g., P deposition in lakes, 

removal of N by denitrification). We also measured factors that could indirectly affect 

nutrient concentrations (e.g., factors associated with evaporation or aquatic and 

terrestrial nutrient processing rates). Temporal data describing seasonal changes in 

climate or vegetation were also measured. Our measurements of spatial data included 

both average upstream catchment conditions and the value of each variable at the 

sampling point. Catchments were delineated by applying the Multi-Watershed 

Delineation Tool (Chinnayakanahalli 2006) to 30 m Digital Elevation Models. In total, 

these measurements produced 182 potential predictor variables for each site. The major 

categories of predictors and the specific predictors selected for the final models are 

described below. The full list and descriptions of predictors is available in Appendix 

Table A. 

Data on potential sources of P and N include descriptions of underlying geology, 

amounts of atmospheric deposition, and distributions of N-fixing plants. All geologic 

assessments were derived from the Preliminary Integrated Geologic Map Databases for 

the United States (Ludington et al. 2007, Stoeser et al. 2007). Because basalts can be 

sources of elevated stream P (Meybeck 1982), we measured the percent of each 

catchment underlain by volcanic rocks. We also measured each catchment’s average 

bedrock composition of P2O5, N, CaO, MgO, and S (see Chapter 2 for details). Because 

bedrock N in the form of NH4 is more easily weathered than organic forms (primarily 

kerogen, Holloway and Dahlgren 2002), we also estimated the amount of bedrock NH4. 

Although NH4 exists in other rock types, we based our estimates of NH4 rock content on 
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metamorphic rocks only because mineralization of N is associated with diagenesis and 

metamorphism (Holloway and Dahlgren 2002). We extracted bedrock N values from all 

geologic map units associated with metamorphic rocks and applied this value as our 

estimate of bedrock NH4 concentration. Atmospheric deposition was measured as the 

long-term (1994-2006) average wet deposition concentrations of NO3, Ca, Na, and SO4 

from the National Atmospheric Deposition Program National Trends Network. Because 

dry deposition can be a major source of N we also estimated catchment average annual 

dry + wet TN deposition. These estimates were obtained by applying the Watershed 

Deposition Tool to analyze Community Multiscale Air Quality model output (CMAQ, 

Schwede et al. 2009) and estimate long-term average deposition for available data 

(2002 – 2006). N-fixing plants can be the dominant source of N in some streams (e.g., 

Compton et al. 2003), so we developed several predictors describing the potential 

distribution of N-fixing woody plants identified by the USDA PLANTS Database as 

naturally occurring in the western U.S. These plants included Alnus incana, Alnus rubra, 

Ceanothus velutinus, and Prosopis glandulosa. To develop maps of the potential 

distributions of these species under natural conditions, we used the LANDFIRE 

Biophysical Settings Model descriptions and layers which together describe pre-

settlement vegetation patterns. We first identified which LANDFIRE Biophysical Settings 

Model descriptions listed each species as either occurring or dominant (LANDFIRE 

2011b). We then extracted those grid cells associated with the identified Biophysical 

Settings Model from the LANDFIRE Biophysical Settings layer (LANDFIRE 2011a) to 

create layers describing the expected locations where each species would be either 

present or dominant in our study area. We also calculated Alnus rubra percent cover for 

each catchment from estimates of current forest composition derived from Gradient 
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Nearest Neighbor imputation (Ohmann et al. 2007) of areas across the Pacific Northwest 

by the Landscape, Ecology, Modeling, Mapping, and Analysis project (LEMMA 2011).  

Potential sinks for nutrients include uptake or retention by vegetation, soils, lakes or 

wetlands; denitrification; and chemical precipitation or adsorption. To characterize spatial 

differences in potential vegetative uptake we used long-term (2000-2009) average 

MODIS satellite Enhanced Vegetation Index (EVI) values (Huete et al. 2002) as a proxy 

for spatial variation in plant biomass. Because MODIS EVI data are available in weekly 

increments starting in 2000 we could potentially use it to characterize temporally specific 

differences in vegetative uptake also (i.e., EVI for the specific time of the sample or 

increase in EVI in the previous month). However 10% of our data was collected before 

MODIS became operational, so we relied on day of year of the sample to account for 

seasonal variations in vegetative uptake. We characterized major differences in 

vegetation composition with data from the 2001 National Land Cover Dataset (NLCD, 

Homer et al. 2004). We used maps of soil organic carbon (SOC) (Global Soil Data Task 

Group 2000) and soil organic matter (SOM) content (NRCS 2011) to characterize the 

potential release or immobilization of nutrients by soils caused by microbial uptake or 

chelation associated with SOC or SOM. To describe potential differences in nutrient 

retention by lakes and wetlands, we measured the percent of each catchment classified 

as lake, wetland, or both (i.e., water body) in both the NLCD and the National 

Hydrography Dataset (NHD, USGS 2006). We also assessed the size of the largest 

water bodies in each catchment and the amount of flow routed through these water 

bodies in the NHD data. We also measured environmental variables associated with 

differences in conditions favorable to denitrification, such as soil bulk density (lower pore 

connectivity with increased density creates more anaerobic sites) or the amount of 

surface–subsurface hydrologic exchange in streams (increased exchange brings more N 
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in contact with hyporheic waters). Soil density was obtained from the U.S. General Soil 

Map (NRCS 2011). Surface-subsurface hydrologic exchange was characterized by both 

average catchment hydraulic conductivity and an index of groundwater velocity 

estimated with the MRI-Darcy model (Baker et al. 2003). The MRI-Darcy model applies 

Darcy’s equation within a GIS environment (see Chapter 2 for details). We also 

measured other factors that could potentially influence chemical precipitation or 

adsorption of nutrients where spatial data were available. These variables included the 

amount of Ca available from either bedrock or atmospheric sources that could act as a 

co-precipitate with P, and soil pH which could influence adsorption or cation exchange.  

We used long-term estimates (1971-2000) of average precipitation, number of wet 

days, air temperature, day of last freeze, and relative humidity produced by the 

Parameter-elevation Regression on Independent Slopes Model (PRISM, Daly et al. 

1994) to estimate the effects of dilution and evaporative concentration. Because 

temporal variation in precipitation can influence nutrient concentrations, we also 

measured PRISM monthly mean precipitation for the month of the sample, mean 

precipitation for the month previous to the sample, and mean annual precipitation for the 

year previous to the sample.  

We also measured other factors that could potentially affect processing rates or 

retention, or that could act as proxies for factors we could not measure. These variables 

included soil order and properties (e.g., available water content, erosion factor, and 

percent hydric soils), topography (e.g., elevation, relief, and catchment shape), 

catchment area, Level II ecoregion, and average channel slope. We also included 

measurements of other atmospheric deposition components not directly related to 

nutrient concentrations like Mg, Na, Cl, and SO4.  
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Model development and evaluation 

We used the nonparametric modeling technique Random Forest (RF, Breiman 2001) 

to develop empirical predictive models. RF models outperformed multiple linear 

regression models for other water chemistry constituents because of their ability to 

account for both interactions between variables and nonlinear relationships (see Chapter 

2). RF models are ensembles of classification and regression trees (CART, Breiman et 

al. 1984), where observations are recursively split into groups, minimizing the remaining 

unexplained variance within each group. Splits are constructed as a series of binary 

rules based on one of the explanatory variables. However, CART models are sensitive 

to small changes in training data. RF overcomes this limitation by growing multiple 

individual trees using a bootstrap sample of the training data and a random sample of 

the predictors at each split. RF predications are then generated by averaging the 

predictions of all trees. RF estimates the predictive accuracy of the model from 

observations that were excluded from each bootstrap sample (the out of bag error) and 

the importance of each predictor by measuring how out of bag error changes when each 

predictor is permuted. We implemented RF using the R package randomForest (Liaw 

and Wiener 2009) creating 1500 trees for each model. To create the most parsimonious 

model and minimize the number of correlated predictors, we modeled iteratively, 

removing correlated or low importance predictors until a model’s out of bag error began 

to increase. We used partial-dependence plots to visualize relationships between 

nutrient concentrations and predictors, and removed any predictors for which the 

direction of response in nutrient concentrations reversed directions more than three 

times because such patterns are likely spurious relationships. After predictor variables 

were selected, we used the tuneRF function to optimize the size of the random sample 

of the predictors tried at each split. To correct for a small bias inherent in RF regression 
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models (Zhang and Lu 2012), we also applied the bias correction function internal to the 

randomForest package.  

We used both the training (internal) data and an external validation dataset to 

evaluate model performance. External validation data were selected by randomly 

sampling 5% of sites, stratified by level II ecoregion (CEC 2006) to ensure the validation 

set represented all environments. Internal evaluations were based on out of bag 

observations (analogous to cross validation) allowing us to assess how well the models 

performed across the widest range of conditions. External validation allowed us to 

rigorously assess the applicability of these models to completely independent 

observations. We quantified model performance with the Nash-Sutcliffe Model Efficiency 

coefficient (NSE) and r2 values associated with linear regressions of observed vs. 

predicted concentrations (Piñeiro et al. 2008). We assessed model bias (systematic 

over- or underprediction) and consistency (deviance between observations and 

predictions remains constant over their ranges) by testing if the regression of observed 

vs. predicted concentrations had an intercept = 0 and a slope = 1 using an equivalence 

test (Robinson et al. 2005). Intercepts ≠ 0 indicate model bias, whereas slopes ≠ 1 

indicate that model predictions lack consistency across the range and model over- or 

underpredicts at the extremes. The equivalence test approach reverses the test from a 

null hypothesis of agreement between observations and predictions to a null hypothesis 

of having less than a given difference. This test shifts the burden of proof to the model, 

and rejection of the null hypothesis indicates predictions are sufficiently similar to the 

observations for that particular application. A failure to reject the null hypothesis 

indicates there is either insufficient evidence of a similarity between predictions and 

observations or a true difference exists. The amount of difference we considered 

significant (i.e., region of equivalence) was 25% for slope and intercept, assessed with α 
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= 0.05. Instead of applying the equivalence test once, we used a bootstrap analysis with 

10,000 resamples of predictions and observations to estimate the proportion of results 

that would fall within the region of equivalence for both intercept and slope. We also 

used the Root Mean Squared Error (RMSE) to assess model accuracy. Finally, we 

compared the performance of our model with the only other model predicting 

background nutrient concentrations across the western U.S., the SPARROW model 

developed by Smith et al. (2003).  

Because our predictors primarily describe static spatial variation among sites, we 

also wanted to assess how much variation in nutrient concentrations could potentially be 

attributed to temporal or measurement variation. We assessed the magnitude of 

temporal or measurement variation in concentrations by calculating the ratio of between-

site variance (spatial signal) to within-site variance related to temporal and measurement 

noise, i.e. the signal to noise (S:N) ratio (Kaufmann et al. 1999). For example, if more 

variation existed among multiple sites than existed among all repeated samples from the 

same sites, then the S:N ratio would be high. We then used these S:N ratios to estimate 

the best possible r2 that static predictors could produce. Variance among sites was 

calculated from observations in each training data set. Variance among within-site 

replicate samples was based on a subset of 41 EMAP and USU sites sampled multiple 

times for both TP and TN. These samples exhibited temporal variation comparable to 

that seen by Chételat and Pick (2001). We calculated pooled sample variance for these 

replicate samples. We then calculated the S:N ratio from these two variances and the 

maximum possible r2 value as: max(r2) =S:N/(S:N + 1) (Van Sickle 2006 and illustrated 

in figure 2 of Stoddard et al. 2008). We calculated among-site variance with data from all 

sites instead of just sites with replicate samples because this larger data set provides a 
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more representative estimate of the natural variation in stream nutrient concentrations 

across the western U.S. 

 
Determining highest probable concentrations  
based on model predictions 

Site-specific nutrient criteria should incorporate both the model prediction of nutrient 

concentrations and prediction uncertainty arising from unaccounted variation, imperfect 

model structure, and error in measuring predictor values and nutrient concentrations. 

Prediction uncertainty can be quantified by establishing a prediction interval describing 

the range of conditions expected at a site. The upper prediction limit (PL) of this interval 

would provide a value based on a site’s most likely nutrient condition and would account 

for all uncertainties associated with that prediction arising from unexplained variation and 

model uncertainty. Distribution based statistical methods (e.g., linear regression) are 

able to produce prediction intervals from an assumed normal distribution, but non-

distributional methods like RF cannot. Quantile Regression Forests have been proposed 

as a method for determining prediction intervals (Meinshausen 2006), but this approach 

has two shortcomings. RF models cannot extrapolate beyond the range of the data used 

to construct them, so quantiles based on RF models become constrained at the lower 

and upper ends of the data. Also, the quantiles produced by quantile random forest 

models do not account for the uncertainties associated with the estimates of a given 

quantile. To develop reliable prediction intervals for our RF models, we instead relied on 

two forms of empirically derived prediction intervals.  

The first method, referred to as the Simple Empirical Error (SEE) method, empirically 

determines the amount of error for each prediction from a bootstrap sample of residuals 

from the training data (suggested by John Van Sickle, USEPA-Corvallis, OR, personal 

communication). For each prediction, we sampled all residuals 500 times with 
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replacement and added each sampled residual to the prediction to create an empirical 

distribution of the prediction plus error. The 95th percentile of this distribution was then 

selected as the upper PL for that prediction. 

The second method is a variation of the UNcertainty Estimation based on Local 

Errors and Clustering (UNEEC) method of Shrestha and Solomatine (2008). UNEEC is 

similar to the first method in that errors are determined from a bootstrap sample of 

residuals from the training data, but instead of using a sample of all residuals, UNEEC 

only uses residuals from those samples similar to the site we are trying to predict. 

Sample residuals for similar sites were derived by first clustering all training observations 

by their environmental properties and then bootstrap sampling the residuals of each 

cluster and selecting the 95th percentile as the error for that cluster. For each prediction, 

probability of membership in each cluster is determined and these probabilities are used 

to calculate a weighted average of the 95th percentile errors for all clusters. This 

weighted average error is then added to the prediction to determine the upper 95th 

percentile PL for that prediction. We created clusters based on those environmental 

variables selected for the RF model. These environmental data were first standardized 

to a common scale and then clustered (k-means clustering). We selected the number of 

clusters to both minimize the sum of squares and ensure the minimum number of 

samples included in each cluster was greater than 50. We then randomly sampled the 

residuals of the training data for each cluster 500 times with replacement and 

determined the 95th percentile value. Probability of cluster membership for new 

observations was determined by applying a separate RF model built with the same 

transformed environmental variables used in clustering. These probabilities of cluster 

membership were then used as weights when calculating the average 95th percentile 

error to be added to each prediction to determine the upper PL. 
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Results 

 
Model structure and performance 

Relationships between nutrient concentrations and most predictors were consistent 

with our understanding of how the natural environment influences nutrient 

concentrations (Tables 3-2 and 3-3). Both models included factors related to both 

sources and sinks, but the TP model had two predictors clearly more important than the 

others, both relating to geologic sources. The TN model did not include any clearly 

dominant predictors, and TN was almost equally influenced by predictors related to both 

sources and sinks. The TP predictors were also almost entirely static (with the exception 

of previous year’s precipitation), whereas the TN model included temporal measures like 

day of year and the prior two months precipitation.  

We tried eliminating correlated variables during variable selection, but in several 

cases removing correlated predictors degraded model performance. To maximize the 

model’s ability to make predictions, correlated variables were retained if they improved 

model performance. The only predictors in our TN model that were strongly correlated 

were atmospheric SO4 and NO3 deposition (r=0.9). Correlated TP predictors included: 

relative humidity and soil organic carbon (r=0.8), relative humidity and atmospheric Ca 

deposition (r=0.64), relative humidity and previous year’s precipitation (r=0.63), soil 

organic carbon and previous year’s precipitation (r=0.67), local minimum temperature 

and EVI (r=0.63), % volcanic lithology and rock P concentration (r=0.69), and soil 

erosion factor and soil water capacity (r=0.61). RF models are robust to the effects of 

correlated predictors (Cutler et al. 2007). However, correlated predictors can cause 

variable importance measures to be unreliable (Strobl et al. 2008), so inferences  
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Table 3-2. Predictors, relative importance, direction of effect, and associated 
mechanisms for TP model 
Predictor Impa Effectb Interpretation

Gila Mtns. 
Ecoregion 

36 
(0.8) 

 

Unusual combination of steep topography and large amounts of 
young basalts in Upper Gila Mountains / Mogollon Rim result in 
increased P (Rampe et al. 1981) 

% Volcanic 
Lithology 

31 
(1.8) 

Volcanic rocks are large source of P (Dillon & Kirchner 1975), that 
chemically weather more quickly than other igneous rocks types 
(Gislason et al. 1996) 

Previous 
Year's 
Precipitation 

26 
(1.6) 

Captures both spatial variability in amount of dilution with increasing 
discharge and the wash out of retained P by previous year's flood 
events (House 2003) 

Rock % CaO 
24 

(1.3) 

Increased Ca availability results in co-precipitation with P in river bed 
(House 2003) although contrasts with increased rock weathering 
(Mulholland 1992, Cross & Schlesinger 2001) 

Relative 
Humidity 

24 
(1.5) 

Low humidity results in increased evaporative concentration of 
solutes, in addition to affecting TP by decreasing soil organic carbon 

Local 
Minimum 
Temperature 

22 
(0.9) 

Lack of freezing results in increased water flow and less nutrient 
uptake (Green & Finlay 2010), more shading and less uptake by 
periphyton, or less P sorption by wetlands (Wang et al. 2007) 

Area largest 
water body 

21 
(1.0) 

Presence of lakes or wetlands acts as a sink for P in catchment, with 
larger water bodies retaining more P (Smith et al. 2003) 

Average 
Channel 
Slope 

21 
(0.9) 

Low slopes have greater hydrologic flushing of P from saturated 
surface soils (D’Arcy & Carignan 1997). Lower P retention on high 
slopes (Hill et al. 2010) may result in less P export at baseflow. 

Atmospheric 
Ca 
Deposition 

21 
(1.5) 

Ca deposition acts as surrogate for dust deposition, the major source 
for atmospheric P (Reynolds 2001) 

Soil Organic 
Carbon 

20 
(2.8) 

High SOC increases biotic P uptake (Kirschbaum 2000) and 
immobilization in organic form (Stevenson & Cole 1999), but also 
correlated with old leached soils (Walker & Syers 1976) 

Enhanced 
Vegetation 
Index 

19 
(1.1) 

Initially increasing vegetation retains P resulting in less P in streams, 
but at higher levels additional vegetation results increases chemical 
weathering and release of P 

Soil Water 
Capacity 

19 
(1.0) 

Higher water capacities associated with fine soils are correlated with 
higher surface runoff and erosion rates (Panagopoulos et al. 2007) 

Soil Erosion 
K Factor 

18 
(1.3) 

Highly erodible soils transport greater amounts of P with suspended 
sediment 

Rock % P 
16 

(1.1) 
High rock P acts as source of P within catchment, % rock P captures 
variation in P among non-volcanic rocks 

% Alfisols 
15 

(1.1) 

Alfisols may increase P export by providing Fe allowing P to bind to 
dissolved humic matter (Dillon & Molot 1997) or reduce P retention in 
upper horizons due to low clay content (Bhadha & Jawitz 2010). 

 

a. Importance, listed as % increase in mean squared error when predictor is removed, with standard error of 
the mean in parentheses calculated from 50 separate models. 
b. Effect illustrated as partial dependence plots of each predictor with all other predictors held constant. 
Change in predictor is displayed on the X axis and change in TP is displayed on the Y axis. 
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Table 3-3. Predictors, relative importance, direction of effect, and associated 
mechanisms for TN model 
Predictor Impa Effectb Interpretation 
Mean 
Number of 
Wet Days 

27 
(0.9) 

Wet soils resulting from more wet days increases denitrification 
(Bollmann & Conrad 1998), more precipitation increases dilution, dry 
conditions favor N build up and flushing (Van Miegroet et al. 2001) 

Minimum 
Temperature 

25 
(0.7) 

Higher temperatures increase N-fixation in soil (Cleveland et al. 1999) 
and streams (Marcarelli & Wurtsbaugh 2006) and also litter 
decomposition (Park et al. 2003) and soil nitrification  

Atmospheric 
Na 
Deposition 

24 
(0.9) 

Mechanism appears to be increased release of NH4 associated with 
Na (and then nitrification of the released NH4), not direct exchange 
with Cl (Jana Compton, USEPA, personal comm.) 

Day of Year 
24 

(0.8) 
Phenology related uptake of N by plants, reaching its maximum in 
summer (Also note higher inputs in spring than fall from snowmelt) 

Prior 2 
Months 
Precipitation 

23 
(0.9) 

Precipitation favors N fixation, litter decomposition (Lewis et al. 1999), 
and flushing (Kane et al. 2008) in mesic areas, whereas in xeric areas 
it may increase plant uptake and/or denitrification 

Atmospheric 
NO3 
Deposition 

21 
(0.8) 

Source of N from anthropogenic and natural sources 

Atmospheric 
SO4 
Deposition 

21 
(0.7) 

No known mechanism, but Likens et al. (2002) and Cai et al. (2011) 
saw same pattern, may be surrogate for other source (like dry N 
deposition), or perhaps SO4 displaces NO3 adsorbed to soils 

Enhanced 
Vegetation 
Index 

20 
(1.1) 

Increasing biomass results in N uptake to a point, where forest 
maturation results in decreased N retention 

Soil Bulk 
Density 

18 
(1.0) 

Increasing soil density creates more anaerobic sites, therefore 
increases denitrification in soils (Torbert & Wood 1992) 

Ground 
Water Index 

16 
(0.9) 

Higher ground water index could reflect either up welling of ground 
water with little soil contact or increasing hyporheic zone contact 
increasing denitrification (Grimaldi & Chaplot 2000) 

% Evergreen 
15 

(0.8) 

Kane et al. (2008) saw same pattern, perhaps due to slower 
processing or lower N content of evergreen litter (Lopez et al. 2001, 
Washburn & Arthur 2003), or as surrogate for a soil attribute 

% Alnus 
rubra 
dominated 

10 
(0.8) 

Alnus rubra (where present) is a major source of N (Compton et al. 
2003) 

a. Importance, listed as % increase in mean squared error when predictor is removed, with standard error of 
the mean in parentheses calculated from 50 separate models. 
b. Effect illustrated as partial dependence plots of each predictor with all other predictors held constant. 
Change in predictor is displayed on the X axis and change in TN is displayed on the Y axis. 
 

regarding the relative importance of different processes in Tables 3-2 and 3-3 should be 

made with caution.  
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Both models predicted nutrient concentrations without significant bias, but were 

relatively imprecise (Table 3-4 and Figure 3-2). The TP model accounted for less than 

half of the variation in TP concentrations, and the TN model accounted for less than a 

third of TN concentrations. However, both models did have positive, if modest, Nash 

Sutcliffe Model Efficiencies indicating some predictive power. RMSEs of both models 

were less than 12% of the range of observed values (TP range: 1 – 192 μg/L, TN range: 

5 – 960 μg/L). Only the TP model showed any evidence of bias, which was only slight (-

2.3 µg/L) with 16% of the bootstrapped validation samples having an intercept less than 

the specified region of equivalence. Both models had slopes equivalent to 1 when 

assessed with training data, but did not when assessed with validation data, indicating 

predictions were not always consistent with observed values at new locations. For 

validation data, 51% of the bootstrap slope estimates for the TP model fell above the 

region of equivalence and the slope of all predictions together was 1.3, although this  

 

Table 3-4. Assessment of model performance and comparison with predictions of the 
SPARROW model 

Nutrient Model Data n r2 a NSE b RMSE
Equivalent 
Intercept c 

Equivalent 
Slope d

TP RF Tng 752 0.40 0.40 16.2 100.0 100.0
 Val 40 0.46 0.43 20.5 83.8 22.2 
 SPARROW Tng 752 0.02 -0.40 24.7 20.6 0 
 Val 40 0.04 -0.10 28.5 56.1 16.4 

TN RF Tng 665 0.32 0.32 113.9 100.0 99.6 
 Val 35 0.23 0.16 80.1 96.8 34.6 
 SPARROW Tng 665 0.04 -0.40 163.8 100.0 0 
 Val 35 0 -0.58 109.6 75.7 0.4 

 

a. Squared Pearson correlation between observations and associated model 
predictions. 
b. Nash-Sutcliffe Model Efficiency. 
c. Percentage of 10,000 bootstrap simulations falling within the region of equivalence 
(Eq0 = Ŷ±25%) for the intercept = 0. 
d. Percentage of 10,000 bootstrap simulations falling within the region of equivalence 
(Eq1 = m±25%) for the slope = 1. 
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Figure 3-2. Plots of TP and TN observed vs. predicted values for both training and 
validation data. 
 

result is heavily influenced by the single validation observation above 100 μg/L. This 

slope > 1 indicates that the model increasingly overpredicted with increasing TP 

concentrations. The equivalence test for slope showed the opposite pattern for the TN 

model, with 64% of the bootstrap estimates of slope falling below the region of 

equivalence and a smaller slope (0.66), indicating under-predictions at higher 

concentrations. Both models explained much more variance than did predictions based 

on the SPARROW model (Table 3-4) with RMSEs 25% lower than those for the 

SPARROW model. 

Although our models had relatively low r2 values, the results of our S:N analysis 

indicated that both models explained a large proportion of the static spatial variation  
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Table 3-5. Assessment of Signal to 
Noise (S:N) Ratio 

Model
Varsites 

(Signal)
Varreps 
(Noise) S:N 

Max 
r2 a 

TP 438 520 0.84 0.46
TN 19175 12155 1.58 0.61

 

a. Highest possible r2 value for a given 
S:N ratio calculated as S:N/(S:N + 1). 

 

(Table 3-5). The TP model accounted for 87% of the static spatial variation in 

concentrations, i.e., the model explained 40% of the observed variation compared to a 

maximum possible of 46%. The TN model accounted for 53% of the spatial variation. 

The remaining unexplained variation is either due to temporal variation or measurement 

error.  

 
Determining the highest probable concentration  
based on model predictions 

The SEE and UNEEC methods produced similar upper PLs (Figure 3-3). Each 

method produced site-specific upper PLs, as opposed to a single line produced by 

distribution-based methods. For visual clarity, we plotted the envelopes containing 

individual upper PLs of training sites instead of the cloud of individual upper PLs 

themselves. Both methods identified identical numbers of training and validation sites to 

be greater than their upper PL (Table 3-6). Prediction interval coverage probabilities 

(PICPs, the probability that all observed values fit within their prediction limits) calculated 

from validation data indicated that 90% and 94% of predictions were within the prediction 

limits for both TP and TN, respectively, for both methods. Ideally the PICP would equal 

the selected prediction limit of 95%. The TN model identified approximately the correct 

number of sites as above the upper PL, but upper PLs for the TP model were 

conservative, identifying more sites above the limit than expected. 
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Figure 3-3. Plots of TP and TN observed vs. predicted values and upper prediction limits 
for both training and validation data. Observations are plotted as grey dots (training data) 
or open circles (validation data). Regions containing upper PLs for training data are 
plotted as filled grey (SEE method) or cross-hatch (UNEEC method). Site-specific upper 
PLs for validation data are plotted as filled circles (SEE method) or bars (UNEEC 
method). 
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Table 3-6. Performance of upper PLs 
          SEE Method        _        UNEEC Method       _ 
 Training Data Validation Data Training Data Validation Data 

Model 

# over 
upper 
PLa PICPb 

# over 
upper 
PLc PICP 

# over 
upper 
PLa PICPb 

# over 
upper 
PLc PICP 

TP 68 91% 4 90% 68 91% 4 90% 
TN 61 91% 2 94% 61 91% 2 94% 

a. n for TP training data is 752 and for TN training data is 665. 
b. PICP = Prediction Interval Coverage Probability (Sherstha and Solomatine 2008). 
c. n for TP validation data is 40 and for TN validation data is 35. 

 

Although both SEE and UNEEC identified the same number of sites as having 

concentrations greater than the upper PL, the specific sites identified as being over their 

PL varied between methods. For predicted high concentrations, the UNEEC method’s 

upper PLs were larger than PLs produced by the SEE method, and the reverse was true 

for smaller predicted concentrations. This pattern occurred because of the 

heteroscedasticity in model errors (seen in Figure 3-2), where larger predictions were 

made with larger errors. The SEE method applies the same error to all predictions, so 

therefore does not account for heteroscedasticity in model errors. 

 
Discussion 

Model performance 

Our results showed that spatial variation in natural background TP and TN 

concentrations can be accurately predicted from geographic data, albeit not as precisely 

as we would like. We consider our models to be accurate because the TN model 

exhibited no consistent bias and the bias of the TP model was less than 2% of the range 

of natural variation in TP concentration among our sites. Model predictions are generally 

applicable across the study area, as demonstrated by the low RMSEs at validation sites 
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for both models. Because geothermal inputs can greatly affect nutrient concentrations, 

streams with significant geothermal inputs are the major exception to the generality of 

our predictions. The concordance of the observed relationships between predictors and 

nutrient concentrations with known mechanisms influencing TP and TN concentrations in 

streams further increases our confidence in the robustness of model predictions. The 

fact that the models accounted for a majority (87% for TP, 53% for TN) of the spatial 

variation in TP and TN concentrations indicates that the models were highly successful 

in capturing site-specific differences in reference conditions. We consider these models 

to be primarily spatial because the one or two predictors with temporal components (i.e., 

previous year’s precipitation in TP model, and day of year and prior 2 months 

precipitation in TN model) were of only moderate importance in either model. 

Model predictions based on measures of continuously varying environmental factors 

also clearly outperformed the SPARROW model predictions that are based on regional 

predictors, runoff, and in-steam losses (Smith et al. 2003). Although the SPARROW 

model we used relies on ecoregions to control for spatial variation in nutrient sources, 

newer versions of the SPARROW model (Wise and Johnson 2011, Garcia et al. 2011) 

have begun to directly account for variation in natural sources of nutrients. These new 

SPARROW models include P concentrations in stream sediment, a proxy for P 

concentrations of underlying geology, and distributions of N-fixing Alnus rubra as natural 

sources of nutrients. These later models may predict natural background concentrations 

better than the Smith et al. (2003) model, but because they only predict annual yields we 

could not compare their predictions with our results. 

 
Predictors 

Most of the relationships between environmental factors and nutrient concentrations 
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matched expectations based on previous studies, but relationships between nutrient 

concentrations and relative humidity, Ca deposition, EVI, precipitation, and SO4 

deposition were not as clearly related to known mechanisms. Increasing TP 

concentrations with decreasing humidity could be caused by evaporative concentration 

(Reddy et al. 1999). However, there is no reason to expect that atmospheric Ca 

deposition is directly linked to TP. Instead it is likely that the NADP measure of wet Ca 

deposition is correlated with dust deposition (Brahney 2012) and that this variable may 

be acting as a surrogate for the deposition of P in dust (Reynolds et al. 2001). 

Decreasing TP and TN concentrations with increasing EVI was expected due to 

increasing nutrient retention with increasing vegetation cover. However, this pattern only 

held for areas with lower EVI values associated with grasslands and scrub, and the 

opposite pattern occurred in areas with higher EVI values associated with forests (i.e., 

nutrient concentrations increased with increasing EVI). These increasing nutrient 

concentrations in forested areas could be attributed to lower nutrient retention by mature 

forest (Vitousek and Reiners 1975), built up litter fall from decades of fire suppression 

acting as a source of nutrients (Miller et al. 2005), or decreased microbial biomass 

resulting in lower P retention (Chen et al. 2003). Additional vegetation could also lead to 

increased rock weathering (as seen for other elements, see Chapter 2) which would 

release additional P.  

The relationship between TN concentrations and precipitation also showed different 

directions of effect in different environments. TN concentrations declined with additional 

precipitation in xeric areas, but increased with additional precipitation in mesic ones. 

Although TN concentrations have been observed to be positively correlated with 

precipitation in mesic areas (e.g., Hill 1986, Vanderbilt et al. 2003) and negatively 

correlated with precipitation in xeric areas (e.g., Lewis and Grant 1979, Alvarez-Cobelas 
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et al. 2010), these two patterns have not been observed in the same data set before. 

Increasing precipitation in mesic areas can lead to increased TN concentrations due to 

increased N fixation in wet soils (Cleveland et al. 1999), litter decomposition (Lewis et al. 

1999), and flushing caused by greater stream/hill slope connectivity (Kane et al. 2008). 

Howarth et al. (2006) also proposed that increased precipitation results in shorter water 

residence times that limit the amount of contact between runoff and denitrifying 

organisms in the streambed. We suspect the negative relationship we observed between 

precipitation and TN concentrations in xeric areas is caused by water-dependent plant 

uptake. Greater precipitation in xeric areas may also create more anoxic zones in soils 

and thus increase denitrification (Bollmann and Conrad 1998). The relationship that is 

the least interpretable was the positive association between TN and atmospheric SO4 

deposition. This relationship is similar to the relationship seen by Cai et al. (2011) 

between stream NO3 and atmospheric SO4 deposition in streams in Great Smoky 

Mountains National Park. Although SO4 deposition could have a direct effect on stream 

TN by suppressing plant growth and hence N uptake, it is also likely that SO4 deposition 

is a surrogate for another process or N source such as dry deposition. 

Volcanic rocks are a known source of P, but we were surprised at how important 

they were in predicting stream TP relative to measures of percent rock P. During model 

development, we created models without percent volcanic lithology as a predictor to 

assess its importance relative to measures of percent rock P. That model performed 

nearly as well as our TP model with volcanic lithology (r2 of 0.37 vs. 0.40) and percent 

rock P became the most important predictor, indicating that most of the explanatory 

power of volcanic rocks is related to their P content. Faster weathering rates of volcanic 

rocks could explain the remaining difference in the importance between these two 

predictors. Another reason volcanic rock could have been a better predictor of TP 



87 
 

 

relative to rock phosphorous is that our estimates of basalt P content may have been 

biased by applying median P rock content derived from global databases, which may not 

accurately reflect P values for basalts in the USA. However, the importance of the Gila 

Mountains/Mogollon Rim Ecoregion in predicting stream TP concentrations suggests a 

different explanation. Streams in the upper Gila Mountains/Mogollon Rim Ecoregion had 

an average TP concentration more than double the concentration seen in the rest of our 

study area (48 µg/L vs. 18 µg/L). The high TP concentrations in this region are likely due 

to the occurrence of large, recently active (within 1000-3000 years) basalt flows, which 

weather faster than older basalts (Gislason et al. 1996). The importance of volcanic 

rocks in predicting TP in western U.S. streams may be related to their relatively young 

age and fast weathering relative to other rock types. 

Several environmental factors associated with nutrient concentrations in other 

studies were not selected as predictors in our models. Rock N and dry N deposition 

have both been shown to be sources of N (Holloway and Dahlgren 2002, Fenn et al. 

2003), which increases TN concentrations in streams and lakes. Rock N content was 

positively related to stream TN in our data as observed elsewhere (Williard et al. 2005, 

Gardner and McGlynn 2009), indicating that rock N is a source. However, this 

relationship was weak and including it as a predictor did not improve model fit. Rock N 

may act as a significant source of stream TN only in specific circumstances where rock 

N content is high and readily weathered (e.g., Gardner and McGlynn 2009), such as in 

carbonaceous or oil shales. We also included estimates of dry N deposition derived from 

the CMAQ model in the TN model, but including these estimates slightly decreased 

model performance compared with models that included only wet N deposition (i.e., 

NADP data). This decrease in model performance with inclusion of dry N deposition 

estimates does not imply that dry deposition is not influencing stream TN, but rather any 
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potential model improvement associated with the inclusion of dry deposition was 

swamped by errors in deposition estimates. CMAQ dry deposition estimates are based 

on emissions data instead of measured deposition as in the NADP data. Errors in 

deposition estimates could be caused by inaccurate emissions data, errors in the model 

estimating the distribution and amount of deposition, or both. 

Factors associated with downstream nutrient losses and nutrient colimitation, both of 

which could potentially modify the amount of nutrients exported from catchments, were 

also not included in our models. Including catchment area in our models, which is related 

to travel time and stream size and is associated with nutrient loss (Prairie and Kaiff 

1986, Smith et al. 2003), decreased performance of both the TP and TN models. The 

lack of a relationship with catchment area in our study area probably occurred for 

several reasons. First, previous estimates of in-stream loss rates are mostly from 

agricultural catchments (e.g., Alexander et al. 2000), which have larger loss rates than 

reference catchments (Prairie and Kaiff 1986, Mulholland et al. 2008). Greater uptake in 

streams flowing through agricultural catchments is probably caused by their higher 

nutrient concentrations, despite their lower uptake efficiencies (Mulholland et al. 2008). 

Second, although NH4 uptake is positively related to stream size, the relationship 

between NO3 uptake and stream size is much nosier (Tank et al. 2008). The noisy NO3 – 

stream size relationship may obscure any effect that uptake of NH4 by algae might have 

on TN concentrations because NO3 concentrations are much higher than NH4 

concentrations. Third, surrogates for denitrification (i.e., ground water index) or 

streambed P adsorption or precipitation (i.e., Ca availability or channel slope) might have 

been more strongly associated with N and P removal because they are more direct 

surrogates of nutrient sinks than stream size. We also examined the possibility that P 

and N might be colimiting in streams as they are in lakes (Dodds et al. 2002). If N and P 
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are colimiting, we would expect concentrations of one to be associated with 

concentrations of the other. For example, a P limited system would have lower N uptake 

and higher N export (and TN concentrations) at low P than at high P due to 

stoichiometric constraints on a stream’s ability to use excess N. We assessed if potential 

interactions between TP and TN improved predictions of each nutrient by including each 

nutrient as a predictor of the other. TP (either measured or predicted) had no effect on 

the performance of the TN model, but including measured TN slightly improved the r2 of 

the TP model (0.40 to 0.42). However, because the use of predicted TN did not improve 

the models and including measured TN as a predictor would  prevent the application of 

these models to unmeasured locations, we elected not to include TN as a predictor in 

the final TP model. 

 
Model shortcomings and possible improvements 

Although the models made unbiased predictions of stream TP and TN 

concentrations in the western USA, these predictions could be potentially improved by 

addressing two model shortcomings. The first shortcoming of our models is their reliance 

on some predictors that can be altered by land use, which could potentially bias 

predictions of nutrient concentrations expected under natural conditions at altered sites. 

Vegetation predictors (e.g., EVI and % evergreen) may be especially problematic in this 

regard, but land use alteration could also alter soil properties (bulk density and SOC). 

Because these predictors had relatively low importance, these predictors could simply 

be dropped from the models. A better approach would be to replace these predictors 

with estimates of potential vegetation (e.g., Landfire Biophysiscal Settings Layer) or 

predicted natural soil properties (e.g., Malone et al. 2011). We did not pursue these 
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options in this study because it was not clear a priori which vegetation and soil attributes 

would be important. 

Another shortcoming of our models is their relatively coarse precision. The effect of 

model imprecision is to increase upper prediction limits, making criteria based upon 

these upper limits less protective than they would be if models were more precise. We 

attribute most of the poor model precision to temporal and measurement variation in 

grab sample concentrations that was unaccounted for by our models. A comparison of 

the variation explained by our models with that potentially associated with spatial 

differences among streams indicates the majority of unexplained variation is some 

combination of temporal and measurement error. Much of the unexplained temporal 

variation was probably associated with seasonal and yearly differences in runoff, 

flushing, freezing, or snowmelt. As models that characterize natural runoff and 

hydrologic regimes become available (e.g., Li et al. 2010), temporally and spatially 

explicit predictions of flow should enable better nutrient predictions (Helton et al. 2011). 

Also, some of the unexplained variation in nutrient concentrations may be due to 

differences in methods used to determine nutrient concentrations that occurred over time 

or between agencies. TN measurements before 1999 were almost 4-fold higher on 

average than measurements taken after 1999, resulting in a positive relationship 

between year of sample and TN model residuals. This decrease in measured TN 

concentrations might be partially due to the change from the Kjeldahl digestion method 

to persulfate oxidation and colorimetry method that occurred around this time. Patton 

and Kryskalla (2003) analyzed samples with both methods and observed that TN values 

obtained with persulfate oxidation and colorimetry were on average 15% lower than 

concentrations obtained with the Kjeldahl digestion method. It should be possible to 

improve model performance by limiting data to observations measured with a single 
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method or adjusting concentrations to account for the method used if that information is 

known. We chose to retain these earlier samples in our data to maximize the number of 

environments represented in our model, but recommend that future work be based on 

TN estimates derived from a single method. Developing models based on long-term 

average concentrations or loads should eliminate much of the residual error associated 

with temporal variation in grab sample concentrations. However using long-term 

averages to establish criteria for all of the streams that need to be assessed is not 

practical because of costs associated with such long-term measurements. A better 

approach would be to focus on predicting temporal variation in the nutrient 

concentrations observed from grab samples. Models that could predict both spatial and 

temporal variation would provide a better basis for establishing criteria and can provide 

potentially important ecological information on the location and timing of natural nutrient 

fluctuations that influence primary producers (e.g., Butzler and Chase 2009). 

Much of the remaining unexplained spatial variation is likely associated with some 

combination of natural and anthropogenic factors not included in our models. Natural 

factors that we did not consider include inputs from migrating fish (either excreted or 

from carcasses), the effect of flow modification by beaver dams, variation in uptake with 

spatial or temporal changes in stream metabolism, and natural disturbances that affect 

catchment or riparian vegetation (e.g., Houlton et al. 2003, Eshleman et al. 2004). 

MODIS-derived EVI could be used to detect vegetation disturbances, but model 

development and application would then be restricted to the last 10 years, the period for 

which MODIS observations are available. Development of models of stream gross 

primary production and respiration (e.g., Bernot et al. 2010) would allow us to 

incorporate these metabolic factors that control nutrient uptake and denitrification rates 

(Mulholland et al. 2008). Potential anthropogenic sources of unexplained spatial 
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variation include either historical (e.g., logging) or highly localized land use (e.g., cabins 

with septic systems near creeks), that was not caught by our screening. Dry N 

deposition is another potentially important anthropogenic source, as is nutrient inputs 

delivered by dust (Ballantyne et al. 2011). As the measurement or prediction of dry N 

deposition and dust improves it should be possible to account for these inputs from 

national datasets like the NADP.  

 
Developing nutrient criteria 

Both the SEE and UNEEC methods appear suitable for establishing upper prediction 

limits. PLs produced by both methods were conservative, finding 1-5% more sites above 

their PL than expected from the chosen prediction interval (e.g., Prediction Interval 

Coverage Probabilities were 1 to 5% < the chosen prediction interval of 95%). However, 

complete agreement may be difficult to achieve given that other applications of the 

UNEEC method resulted in PICPs that deviated from desired prediction levels by 4-9% 

(Solomatine and Shrestha 2009, Malone et al. 2011). The UNEEC method better 

accounted for data heteroscedasticity, but this modest improvement required a much 

more complicated approach. UNEEC’s more complicated method may make it more 

difficult for managers and stakeholders to understand. The UNEEC method also 

assumes that prediction error is different under the different natural environmental 

conditions identified in the clustering step (Shrestha and Solomatine 2008). Although this 

assumption may be a reasonable, it has not been rigorously tested. Choice of method 

will involve a tradeoff between the ability to potentially account for heteroscedasticity in 

prediction errors and ease in understanding how criteria are identified.  
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Concluding Remarks 

Model-derived, site-specific criteria should better account for natural variation in 

nutrient concentrations than do regional criteria based on average regional conditions. 

As seen in other studies, observed nutrient concentrations for minimally altered 

reference sites varied over an order of magnitude within ecoregions (Figure 3-4). 

Comparing this variation with proposed regional criteria (horizontal lines in Figure 3-4) 

highlights the difficulty of establishing a single criterion protective of most streams 

without overprotecting some significant minority of streams. For example, the criteria 

proposed by Herlihy and Sifneos (2008) and Smith et al. (2003) for TP in nutrient 

ecoregion II (Western Forested Mountains, Figure 3-4A) would protect the majority of 

sites, but be overprotective of 25% of sites with naturally high TP concentrations. The 

site-specific criteria identified for TP in this ecoregion by our approach are generally 

higher than these regional criteria, but avoid being overprotective. Also, in approximately 

15% of cases, the site-specific criteria would be more protective than the regional 

criteria. This same pattern of model-based upper PLs being higher than the Herlihy and 

Sifneos (2008) regional criteria also occurred for TN in nutrient ecoregion II. In nutrient 

ecoregion III (Xeric West), our site-specific criteria were generally higher than the Smith 

et al. (2003) regional criteria for TP and TN. However, our PL based site-specific criteria 

were generally lower than criteria developed from models by Dodds and Oakes (2004). 

The higher expected nutrient concentrations identified by Dodds and Oakes could have 

resulted from prediction error that occur when effects of land use are not fully captured in 

land use - nutrient models. Hill and Hawkins (in review) noted that stream temperature 

models developed from only reference site data predicted lower temperatures than did 

models built from data collected at both reference and non-reference sites that  
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Figure 3-4. Comparison of observed concentrations and upper PLs for TP in Nutrient 
Ecoregion II Western Forested Mountains (A) and III Xeric West (B) and TN in 
Nutrient Ecoregions II (C) and III (D) with regional criteria from Herlihy and Sifneos 
(2008, solid lines), Dodds and Oakes (2004, dashed lines), and Smith et al. (2003, 
dotted lines). In all four cases, significant variation occurs within each region making 
any criterion identified over or under protective in many instances. Site-specific criteria 
based on upper PLs, although often higher than the regional criteria, better account 
for this observed variation. 
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agreed on average with proposed regional criteria (i.e., the Herlihy and Sifneos criterion 

in Figures 3-4B and D or the Smith et al. criterion in Figures 3-4C), but use of site-

specific criteria would result in lower thresholds in about half the cases and a higher 

thresholds in the other half.  

Establishing meaningful nutrient criteria for individual streams is challenging, but 

necessary for development and application of scientifically defensible and ecologically 

meaningful water quality standards. Model-based, site-specific criteria will protect 

streams with naturally low nutrient concentrations from eutrophication better than 

regional criteria that are based, in part, on data from streams with naturally high 

concentrations. Conversely, streams with naturally higher nutrient concentrations should 

not be held to a standard that is impossible to achieve. Making site-specific predictions 

across large regions might appear challenging, but models based on readily available 

geographic predictors can now be easily developed and applied within a GIS framework 

to produce spatially explicit maps of expected nutrient conditions. Similar site-specific 

predictions have been made of stream bed surface grain sizes across France (Snelder 

et al. 2011). As additional data describing the spatial and temporal factors affecting 

nutrient concentrations become available, models can be improved resulting in nutrient 

criteria that are even more reliable and protective. 

 
References 

Alexander, R. B., R. A.Smith, and G. E. Schwarz. 2000. Effect of stream channel size on 
the delivery of nitrogen to the Gulf of Mexico. Nature 403: 758-761. 

 
Alvarez-Cobelas, M., R. Sanchez-Andres, S. Sanchez-Carrillo, and D. G. Angeler. 2010. 

Nutrient contents and export from streams in semiarid catchments of central Spain. 
Journal of Arid Environments 74:933-945. 

 



96 
 

 

Baker, M. E., M. J. Wiley, M. L. Carlson, and P. W. Seelbach. 2003. A GIS model of 
subsurface water potential for aquatic resource inventory, assessment, and 
environmental management. Environmental Management 32:706-719. 

 
Ballantyne, A. P., J. Brahney, D. Fernandez, C. L. Lawrence, J. Saros, and J. C. Neff. 

2011. Biogeochemical response of alpine lakes to a recent increase in dust 
deposition in the Southwestern, US. Biogeosciences 8: 2689-2706. 

 
Bernot, M. J., D. J. Sobota, R. O. Hall, P. J. Mulholland, W. K. Dodds, J. R. Webster, J. 

L. Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, S. V. Gregory, N. B. Grimm, S. 
K. Hamilton, S. L. Johnson, W. H. McDowell, J. L. Meyer, B. Peterson, G. C. Poole, 
H. M. Valett, C. Arango, J. J. Beaulieu, A. J. Burgin, C. a. Crenshaw, A. M. Helton, L. 
Johnson, J. Merriam, B. R. Niederlehner, J. M. O'Brien, J. D. Potter, R. W. Sheibley, 
S. M. Thomas, and K. Wilson. 2010. Inter-regional comparison of land-use effects on 
stream metabolism. Freshwater Biology 55:1874-1890. 

 
Bhadha, J. H., and J. W. Jawitz. 2010. Characterizing deep soils from an impacted 

subtropical isolated wetland: implications for phosphorus storage. Journal of Soils 
and Sediments 10:514-525. 

 
Bollmann, A., and R. Conrad. 1998. Influence of O2 availability on NO and N2O release 

by nitrification and denitrification in soils. Global Change Biology 4:387-396. 
 
Brahney, J. 2012. The biogoechemical response of alpine lakes to changes in nutrient 

and dust deposition. Dissertation. University of Colorado, Boulder, Colorado. 
 
Breiman, L. 2001. Random forests. Machine Learning 45:5-32. 
 
Breiman, L., J. Friedman, R. Olshen, and C. Stone. 1984. Classification and regression 

trees. Wadsworth, Belmont, CA. 
 
Butzler, J. M. and J. M. Chase. 2009. The effects of variable nutrient additions on a pond 

mesocosm community. Hydrobiologia 617:65-73. 
 
Cai, M., J. S. Schwartz, R. B. Robinson, S. E. Moore, and M. A. Kulp. 2011. Long-term 

annual and seasonal patterns of acidic deposition and stream water quality in a 
Great Smoky Mountains high-elevation watershed. Water Air and Soil Pollution 
219:547-562. 

 
Chen, C. R., L. M. Condron, M. R. Davis, and R. R. Sherlock. 2003. Seasonal changes 

in soil phosphorus and associated microbial properties under adjacent grassland and 
forest in New Zealand. Forest Ecology and Management 177: 539-557. 

 
Cheruvelil, K. S., P. A. Soranno, M. T. Bremigan, T. Wagner, and S. L. Martin. 2008. 

Grouping lakes for water quality assessment and monitoring: The roles of 
regionalization and spatial scale. Environmental Management 41:425-440. 

 



97 
 

 

Chetelat, J., and F. R. Pick. 2001. Temporal variability of water chemistry in flowing 
waters of the northeastern United States: does river size matter? Journal of the North 
American Benthological Society 20:331-346. 

 
Chinnayakanahalli, K. 2006. The multi-watershed delineation tool.  (Available from: 

http://hydrology.usu.edu/mwdtool/). 
 
Chinnayakanahalli , K. J., C. P. Hawkins, D. G. Tarboton, and R. A. Hill. 2011. Natural 

flow regime, temperature and the composition and richness of invertebrate 
assemblages in streams of the western United States. Freshwater Biology 56:1248-
1265. 

 
Cleveland, C. C., A. R. Townsend, D. S. Schimel, H. Fisher, R. W. Howarth, L. O. Hedin, 

S. S. Perakis, E. F. Latty, J. C. Von Fischer, A. Elseroad, and M. F. Wasson. 1999. 
Global patterns of terrestrial biological nitrogen (N-2) fixation in natural ecosystems. 
Global Biogeochemical Cycles 13:623-645. 

 
Commission for Environmental Cooperation (CEC). 2006. Ecological regions of North 

America: toward a common perspective. (Available from: 
http://www.epa.gov/wed/pages/ecoregions/na_eco.htm). 

 
Compton, J. E., M. R. Church, S. T. Larned, and W. E. Hogsett. 2003. Nitrogen export 

from forested watersheds in the Oregon Coast Range: The role of N2-fixing red alder. 
Ecosystems 6:773-785. 

 
Cross, A. F., and W. H. Schlesinger. 2001. Biological and geochemical controls on 

phosphorus fractions in semiarid soils. Biogeochemistry 52:155-172. 
 
Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, and K. T. Hess. 2007. Random 

forests for classification in ecology. Ecology 88:2783-2792. 
 
Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical topographic model for 

mapping climatological precipitation over mountainous terrain. Journal of Applied 
Meteorology 33:140-158. 

 
D'Arcy, P., and R. Carignan. 1997. Influence of catchment topography on water 

chemistry in southeastern Quebec Shield lakes. Canadian Journal of Fisheries and 
Aquatic Sciences 54: 2215-2227. 

 
Dillon, P. J., and W. B. Kirchner. 1975. Effects of geology and land-use on export of 

phosphorus from watersheds. Water Research 9:135-148. 
 
Dillon, P. J., and L. A. Molot. 1997. Effect of landscape form on export of dissolved 

organic carbon, iron, and phosphorus from forested stream catchments. Water 
Resources Research 33: 2591-2600. 

 
Dodds, W. K. 2007. Trophic state, eutrophication and nutrient criteria in streams. Trends 

in Ecology & Evolution 22:669-676. 
 



98 
 

 

Dodds, W. K., and R. M. Oakes. 2004. A technique for establishing reference nutrient 
concentrations across watersheds affected by humans. Limnology and 
Oceanography-Methods 2:333-341. 

 
Dodds, W. K., V. H. Smith, and K. Lohman. 2002. Nitrogen and phosphorus 

relationships to benthic algal biomass in temperate streams. Canadian Journal of 
Fisheries and Aquatic Sciences 59:865-874. 

 
Eshleman, K. N., D. A. Fiscus, N. M. Castro, J. R. Webb, and A. T. Herlihy. 2004. 

Regionalization of disturbance-induced nitrogen leakage from mid-Appalachian 
forests using a linear systems model. Hydrological Processes 18:2713-2725. 

 
Fenn, M. E., J. S. Baron, E. B. Allen, H. M. Rueth, K. R. Nydick, L. Geiser, W. D. 

Bowman, J. O. Sickman, T. Meixner, D. W. Johnson, and P. Neitlich. 2003. 
Ecological effects of nitrogen deposition in the western United States. Bioscience 
53:404-420. 

 
Garcia, A. M., A. B. Hoos, and S. Terziotti. 2011. A regional modeling framework of 

phosphorus sources and transport in streams of the Southeastern United States. 
Journal of the American Water Resources Association 47:991-1010. 

 
Gardner, K. K., and B. L. McGlynn. 2009. Seasonality in spatial variability and influence 

of land use/land cover and watershed characteristics on stream water nitrate 
concentrations in a developing watershed in the Rocky Mountain West. Water 
Resources Research 45:W08411. 

 
Gislason, S. R., S. Arnorsson, and H. Armannsson. 1996. Chemical weathering of basalt 

in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. 
American Journal of Science 296:837-907. 

 
Global Soil Data Task Group. 2000. Global Gridded Surfaces of Selected Soil 

Characteristics (International Geosphere-Biosphere Programme - Data and 
Information System). Oak Ridge National Laboratory Distributed Active Archive 
Center. (Available from: http://www.daac.ornl.gov). 

 
Green, M. B., and J. C. Finlay. 2010. Patterns of hydrologic control over stream water 

total nitrogen to total phosphorus ratios. Biogeochemistry 99:15-30. 
 
Grimaldi, C., and V. Chaplot. 2000. Nitrate depletion during within-stream transport: 

Effects of exchange processes between streamwater, the hyporheic and riparian 
zones. Water Air and Soil Pollution 124:95-112. 

 
Hawkins, C. P., J. R. Olson, and R. A. Hill. 2010. The reference condition: predicting 

benchmarks for ecological and water-quality assessments. Journal of the North 
American Benthological Society 29:312-343. 

 
Helton, A. M., G. C. Poole, J. L. Meyer, W. M. Wollheim, B. J. Peterson, P. J. 

Mulholland, E. S. Bernhardt, J. A. Stanford, C. Arango, L. R. Ashkenas, L. W. 
Cooper, W. K. Dodds, S. V. Gregory, R. O. Hall, S. K. Hamilton, S. L. Johnson, W. H. 



99 
 

 

McDowell, J. D. Potter, J. L. Tank, S. M. Thomas, H. M. Valett, J. R. Webster, and L. 
Zeglin. 2011. Thinking outside the channel: modeling nitrogen cycling in networked 
river ecosystems. Frontiers in Ecology and the Environment 9:229-238. 

 
Herlihy, A. T., and J. C. Sifneos. 2008. Developing nutrient criteria and classification 

schemes for wadeable streams in the conterminous US. Journal of the North 
American Benthological Society 27:932-948. 

 
Hill, A. R. 1986. Stream nitrate-N loads in relation to variations in annual and seasonal 

runoff regimes. Water Resources Bulletin 22:829-839. 
 
Hill, B. H., F. H. McCormick, B. C. Harvey, S. L. Johnson, M. L. Warren, and C. M. 

Elonen. 2010. Microbial enzyme activity, nutrient uptake and nutrient limitation in 
forested streams. Freshwater Biology 55:1005-1019. 

 
Hill, R. A., and C. P. Hawkins. In review. Predicting thermal reference conditions in 

western USA streams. Freshwater Science. 
 
Holloway, J. M., and R. A. Dahlgren. 2002. Nitrogen in rock: Occurrences and 

biogeochemical implications. Global Biogeochemical Cycles 16:1118. 
 
Homer, C., C. Q. Huang, L. M. Yang, B. Wylie, and M. Coan. 2004. Development of a 

2001 National Land-Cover Database for the United States. Photogrammetric 
Engineering and Remote Sensing 70:829-840. 

 
Houlton, B. Z., C. T. Driscoll, T. J. Fahey, G. E. Likens, P. M. Groffman, E. S. Bernhardt, 

and D. C. Buso. 2003. Nitrogen dynamics in ice storm-damaged forest ecosystems: 
Implications for nitrogen limitation theory. Ecosystems 6:431-443. 

 
House, W. A. 2003. Geochemical cycling of phosphorus in rivers. Applied Geochemistry 

18:739-748. 
 
Howarth, R. W., D. P. Swaney, E. W. Boyer, R. Marino, N. Jaworski, and C. Goodale. 

2006. The influence of climate on average nitrogen export from large watersheds in 
the Northeastern United States. Biogeochemistry 79:163-186. 

 
Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. 

Overview of the radiometric and biophysical performance of the MODIS vegetation 
indices. Remote Sensing of Environment 83:195-213. 

 
Ice, G., and D. Binkley. 2003. Forest streamwater concentrations of nitrogen and 

phosphorus - A comparison with EPA's proposed water quality criteria. Journal of 
Forestry 101:21-28. 

 
Kane, E. S., E. F. Betts, A. J. Burgin, H. M. Clilverd, C. L. Crenshaw, J. B. Fellman, I. H. 

Myers-Smith, J. A. O'Donnell, D. J. Sobota, W. J. Van Verseveld, and J. B. Jones. 
2008. Precipitation control over inorganic nitrogen import-export budgets across 
watersheds: a synthesis of long-term ecological research. Ecohydrology 1:105-117. 

 



100 
 

 

Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger, and D. V. Peck. 1999. 
Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. USEPA 
Western Ecology Division, Corvallis, OR. 

 
Kirschbaum, M. U. F. 2000. Will changes in soil organic carbon act as a positive or 

negative feedback on global warming? Biogeochemistry 48:21-51. 
 
Knowlton, M. F., and J. R. Jones. 2006. Natural variability in lakes and reservoirs should 

be recognized in setting nutrient criteria. Lake and Reservoir Management 22:161-
166. 

 
LANDFIRE. 2011a. LANDFIRE 1.0.5 Biophysical settings layer. (Available from: 

http://landfire.cr.usgs.gov/viewer/). 
 
LANDFIRE. 2011b. LANDFIRE 1.0.5 Vegetation Dynamics Model Descriptions. 

(Available from: http://www.landfire.gov/NationalProductDescriptions24.php). 
 
LEMMA. 2011. Landscape, Ecology, Modeling, Mapping, and Analysis Project. 

(Available from: http://www.fsl.orst.edu/lemma/main.php?project=nwfp15&id= 
studyAreas). 

 
Lewis, W. M., and M. C. Grant. 1979. Relationships between stream discharge and yield 

of dissolved substances from a Colorado mountain watershed. Soil Science 128:353-
363. 

 
Lewis, W. M., J. M. Melack, W. H. McDowell, M. McClain, and J. E. Richey. 1999. 

Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 
46:149-162. 

 
Li, M., Q. Shao, L. Zhang, and F. H. S. Chiew. 2010. A new regionalization approach 

and its application to predict flow duration curve in ungauged basins. Journal of 
Hydrology 389:137-145. 

 
Liaw, A., and M. Wiener. 2009. Package randomForests.  (Available from: http://cran.r-

project.org/web/packages/randomForest/index.html). 
 
Likens, G. E., C. T. Driscoll, D. C. Buso, M. J. Mitchell, G. M. Lovett, S. W. Bailey, T. G. 

Siccama, W. A. Reiners, and C. Alewell. 2002. The biogeochemistry of sulfur at 
Hubbard Brook. Biogeochemistry 60: 235-316. 

 
Lopez, E. S., I. Pardo, and N. Felpeto. 2001. Seasonal differences in green leaf 

breakdown and nutrient content of deciduous and evergreen tree species and grass 
in a granitic headwater stream. Hydrobiologia 464:51-61. 

 
Ludington, S., B. C. Moring, R. J. Miller, P. A. Stone, A. A. Bookstrom, D. R. Bedford, J. 

G. Evans, G. A. Haxel, C. J. Nutt, K. S. Flyn, and M. J. Hopkin. 2007. Preliminary 
integrated geologic map databases for the United States Western States: California, 
Nevada, Arizona, Washington, Oregon, Idaho, and Utah. U.S. Geological Survey 
Open-File Report 2005-1305. (Available from: http://pubs.usgs.gov/of/2005/1305/). 



101 
 

 

Malone, B. P., A. B. McBratney, and B. Minasny. 2011. Empirical estimates of 
uncertainty for mapping continuous depth functions of soil attributes. Geoderma 
160:614-626. 

 
Marcarelli, A. M., and W. A. Wurtsbaugh. 2006. Temperature and nutrient supply interact 

to control nitrogen fixation in oligotrophic streams: An experimental examination. 
Limnology and Oceanography 51:2278-2289. 

 
Meinshausen, N. 2006. Quantile regression forests. Journal of Machine Learning 

Research 7:983-999. 
 
Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. 

American Journal of Science 282:401-450. 
 
Miller, W. W., D. W. Johnson, C. Denton, P. S. J. Verburg, G. L. Dana, and R. F. Walker. 

2005. Inconspicuous nutrient laden surface runoff from mature forest Sierran 
watersheds. Water Air and Soil Pollution 163:3-17. 

 
Mulholland, P. J. 1992. Regulation of nutrient concentrations in a temperate forest 

stream - roles of upland, riparian, and instream processes. Limnology and 
Oceanography 37:1512-1526. 

 
Mulholland, P. J., A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. 

L. Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, 
S. V. Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M. 
Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. 
Crenshaw, L. T. Johnson, B. R. Niederlehner, J. M. O'Brien, J. D. Potter, R. W. 
Sheibley, D. J. Sobota, and S. M. Thomas. 2008. Stream denitrification across 
biomes and its response to anthropogenic nitrate loading. Nature 452:202-U246. 

 
Natural Resources Conservation Service (NRCS). 2011. U.S. General Soil Map 

(STATSGO2). (Available from: http://soildatamart.nrcs.usda.gov). 
 
Ohmann, J. L., M. J. Gregory, and T. A. Spies. 2007. Influence of environment, 

disturbance, and ownership on forest vegetation of Coastal Oregon. Ecological 
Applications 17:18-33. 

 
Panagopoulos, I., M. Mimikou, and M. Kapetanaki. 2007. Estimation of nitrogen and 

phosphorus losses to surface water and groundwater through the implementation of 
the SWAT model for Norwegian soils. Journal of Soils and Sediments 7:223-231. 

 
Park, J. H., M. J. Mitchell, P. J. McHale, S. F. Christopher, and T. P. Meyers. 2003. 

Impacts of changing climate and atmospheric deposition on N and S drainage losses 
from a forested watershed of the Adirondack Mountains, New York State. Global 
Change Biology 9:1602-1619. 

 
Patton, C. J., and J. R. Kryskalla. 2003. Methods of analysis by the U.S. Geological 

Survey National Water Quality Laboratory - Evaluation of alkaline persulfate 
digestion as an alternative to Kjeldahl digestion for determination of total and 



102 
 

 

dissolved nitrogen and phosphorus in water. Water-Resources Investigations Report 
03-4174. U. S. Geological Survey, Denver, Colorado. 

 
Piñeiro, G., S. Perelman, J. P. Guerschman, and J. M. Paruelo. 2008. How to evaluate 

models: Observed vs. predicted or predicted vs. observed? Ecological Modelling 
216:316-322. 

 
Prairie, Y. T., and J. Kalff. 1986. Effect of catchment size on phosphorus export. Water 

Resources Bulletin 22:465-470. 
 
Rampe, J. J., R. D. Jackson, and M. R. Sommerfeld. 1981. Physicochemistry of the 

upper Gila River watershed: I. San Francisco River and Clifton Hot Springs. Arizona-
Nevada Academy of Science, Journal 16:1-6. 

 
Reddy, K. R., R. H. Kadlec, E. Flaig, and P. M. Gale. 1999. Phosphorus retention in 

streams and wetlands: A review. Critical Reviews in Environmental Science and 
Technology 29:83-146. 

 
Reynolds, R., J. Belnap, M. Reheis, P. Lamothe, and F. Luiszer. 2001. Aeolian dust in 

Colorado Plateau soils: Nutrient inputs and recent change in source. Proceedings of 
the National Academy of Sciences of the United States of America 98:7123-7127. 

 
Robertson, D. M., D. A. Saad, and D. M. Heisey. 2006. A regional classification scheme 

for estimating reference water quality in streams using land-use-adjusted spatial 
regression-tree analysis. Environmental Management 37:209-229. 

 
Robinson, A. P., R. A. Duursma, and J. D. Marshall. 2005. A regression-based 

equivalence test for model validation: shifting the burden of proof. Tree Physiology 
25:903-913. 

 
Schwede, D. B., R. L. Dennis, and M. A. Bitz. 2009. The watershed deposition tool: A 

tool for incorporating atmospheric deposition in water-quality analyses. Journal of the 
American Water Resources Association 45:973-985. 

 
Shrestha, D. L., and D. P. Solomatine. 2008. Data-driven approaches for estimating 

uncertainty in rainfall-runoff modelling. International Journal of River Basin 
Management 6:109-122. 

 
Smith, R. A., R. B. Alexander, and G. E. Schwarz. 2003. Natural background 

concentrations of nutrients in streams and rivers of the conterminous United States. 
Environmental Science & Technology 37:3039-3047. 

 
Snelder, T. H., B. J. F. Biggs, and M. A. Weatherhead. 2004. Nutrient concentration 

criteria and characterization of patterns in trophic state for rivers in heterogeneous 
landscapes. Journal of the American Water Resources Association 40:1-13. 

 
Snelder, T. H., N. Lamouroux, and H. Pella. 2011. Empirical modelling of large scale 

patterns in river bed surface grain size. Geomorphology 127:189-197. 
 



103 
 

 

Solomatine, D. P., and D. L. Shrestha. 2009. A novel method to estimate model 
uncertainty using machine learning techniques. Water Resources Research 
45:W00B11. 

 
Stevenson, F. J., and M. A. Cole. 1999. Cycles of soil: carbon, nitrogen, phosphorus, 

sulfur, micronutrients. 2nd edition. John Wiley and Sons, New York. 
 
Stoddard, J. L., A. T. Herlihy, D. V. Peck, R. M. Hughes, T. R. Whittier, and E. Tarquinio. 

2008. A process for creating multimetric indices for large-scale aquatic surveys. 
Journal of the North American Benthological Society 27:878-891. 

 
Stoeser, D. B., G. N. Green, L. C. Morath, W. D. Heran, A. B. Wilson, D. W. Moore, and 

B. S. Van Gosen. 2007. Preliminary integrated geologic map databases for the 
United States: Central States: Montana, Wyoming, Colorado, New Mexico, North 
Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Texas, Iowa, Missouri, 
Arkansas, and Louisiana. U.S. Geological Survey Open-File Report 2005-1351. 
(Available from: http://pubs.usgs.gov/of/2005/1351/). 

 
Strobl, C., A. L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. 2008. Conditional 

variable importance for random forests. BMC Bioinformatics 9:307. 
 
Suplee, M. W., A. Varghese, and J. Cleland. 2007. Developing nutrient criteria for 

streams: An evaluation of the frequency distribution method. Journal of the American 
Water Resources Association 43:453-472. 

 
Tank, J. L., E. J. Rosi-Marshall, M. A. Baker, and R. O. Hall. 2008. Are rivers just big 

streams? A pulse method to quantify nitrogen demand in a large river. Ecology 
89:2935-2945. 

 
Torbert, H. A., and C. W. Wood. 1992. Effects of soil compaction and water-filled pore-

space on soil microbial activity and N losses. Communications in Soil Science and 
Plant Analysis 23:1321-1331. 

 
US Environmental Protection Agency (USEPA). 2000. Nutrient criteria technical 

guidance manual, rivers and streams. EPA-822-B-00-002. USEPA Office of Water, 
Washington D.C. 

 
US Environmental Protection Agency (USEPA). 2011. Working in partnership with states 

to address phosphorus and nitrogen pollution through use of a framework for state 
nutrient reductions. USEPA Office of Water, Washington D.C. 

 
US Geologic Survey (USGS). 2006. National Hydrography Dataset (NHD) Medium 

Resolution. (Available from: http://nhd.usgs.gov/data.html ). 
 
Van Miegroet, H., I. F. Creed, N. S. Nicholas, D. G. Tarboton, K. L. Webster, J. 

Shubzda, B. Robinson, J. Smoot, D. W. Johnson, S. E. Lindberg, G. Lovett, S. 
Nodvin, and S. Moore. 2001. Is there synchronicity in nitrogen input and output 
fluxes at the Noland Divide Watershed, a small N-saturated forested catchment in 
the Great Smoky Mountains National Park? The Scientific World 1: 480-492. 



104 
 

 

Van Sickle, J. 2006. Relation between S/N ratio of a metric Y, and the ability of a 
stressor to explain that metric via linear regression. US Environmental Protection 
Agency. 

 
Vanderbilt, K. L., K. Lajtha, and F. J. Swanson. 2003. Biogeochemistry of unpolluted 

forested watersheds in the Oregon Cascades: temporal patterns of precipitation and 
stream nitrogen fluxes. Biogeochemistry 62:87-117. 

 
Vitousek, P. M., and W. A. Reiners. 1975. Ecosystem succession and nutrient retention - 

a hypothesis. Bioscience 25:376-381. 
 
Walker, T. W., and J. K. Syers. 1976. Fate of phosphorus during pedogenesis. 

Geoderma 15:1-19. 
 
Wang, G. P., J. S. Liu, H. Y. Zhao, J. D. Wang, and J. B. Yu. 2007. Phosphorus sorption 

by freeze-thaw treated wetland soils derived from a winter-cold zone (Sanjiang Plain, 
Northeast China). Geoderma 138:153-161. 

 
Washburn, C. S. M., and M. A. Arthur. 2003. Spatial variability in soil nutrient availability 

in an oak-pine forest: potential effects of tree species. Canadian Journal of Forest 
Research-Revue Canadienne De Recherche Forestiere 33:2321-2330. 

 
Williard, K. W. J., D. R. Dewalle, and P. J. Edwards. 2005. Influence of bedrock geology 

and tree species composition on stream nitrate concentrations in mid-Appalachian 
forested watersheds. Water Air and Soil Pollution 160:55-76. 

 
Wise, D. R., and H. M. Johnson. 2011. Surface-water nutrient conditions and sources in 

the United States Pacific Northwest. Journal of the American Water Resources 
Association 47:1110-1135. 

 
Zhang, G., and Y. Lu. 2012. Bias-corrected random forests in regression. Journal of 

Applied Statistics 39:151-160. 



105 
 

 

CHAPTER 4 

AN EXPERIMENTAL ASSESSMENT OF THE EFFECTS OF LOW TOTAL DISSOLVED 

SOLIDS ON THE SURVIVAL AND DISTRIBUTION OF  

STREAM MACROINVERTEBRATES* 

 
Summary 

1. Freshwater taxa must osmoregulate to maintain water and ion balances. If taxa 

differ in their ability to osmoregulate, variation among streams in total dissolved solids 

could influence the spatial distribution of taxa. Previous studies have largely focused on 

the effects of high total dissolved solids (TDS) on freshwater taxa, but the effect of low 

TDS on taxa distributions has been rarely investigated. 

2. We used stream-side and laboratory flow-through microcosm experiments to 

assess the effects of low TDS (measured as electrical conductivity - EC) on three indices 

of fitness (survival, growth, and emergence) for 19 stream invertebrate taxa. We then 

tested the hypothesis that one or more fitness indices would predict the observed 

distribution of these taxa in nature.  

3. In the stream-side experiment, we exposed 13 taxa to stream water with naturally 

low (< 25 μS/cm) and high (> 125μS/cm) EC for 83 days. In the laboratory experiment 

we exposed 16 taxa (10 of which were the same taxa used in the stream-side 

experiment) to low (<30 μS/cm) and high (>300 μS/cm) EC treatments for 55 days. Both 

experiments controlled for differences in habitat, temperature, food availability, and pH. 

We measured how survival, growth, and adult emergence responded to treatments.  

4. Taxa survival varied from significantly higher survival in high EC (3 taxa), to no  

______________________________ 
* Coauthored by Charles P. Hawkins. 
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difference between treatments (15 taxa), to significantly higher survival in low EC 

treatments (1 taxon). Emergence was higher in low EC for 1 taxon, higher in high EC for 

one taxon, and similar in the two treatments for the remainder of the taxa. Growth rates 

differed between treatments for only one taxon.  

5. The difference in survival between treatments predicted taxon EC optima derived 

from a previous field study (r2 = 0.60, p < 0.003). Taxa with the greatest difference in 

survival between high and low treatments all had the highest EC optima, indicating that 

the inability to persist in low conductivity environments likely restricts the distributions of 

some stream macroinvertebrate taxa. 

 
Introduction 

The amount of solutes in stream water plays an important role in determining 

distributions of aquatic invertebrate taxa. For instance, Egglishaw and Morgan (1965) 

showed that streams in Scotland with relatively low total dissolved solids (TDS, <400 

µeq/L of cations) had significantly lower abundances and taxa richness than streams 

with high TDS, with some taxa apparently restricted from lower TDS streams. Similar 

patterns of taxa distributions were seen among the tributaries of the River Duddon 

(Minshall & Kuehne 1969; Minshall & Minshall 1978). In the Duddon catchment, streams 

with low TDS (<245 µeq/L of cations) were dominated by Plecoptera with nearly no 

Ephemeroptera or Gammarus, whereas streams with higher TDS were dominated by 

Ephemeroptera, and Gammarus were common. Although early work examining the 

mechanism responsible for this pattern suggested these differences might be due to 

nutrient availability or pH (Egglishaw 1968; Sutcliffe & Carrick 1973), later work 

demonstrated that TDS was directly responsible for the pattern (Minshall & Minshall 

1978; Willoughby & Mappin 1988), most likely because of osmoregulatory challenges 
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posed by low TDS water. Because freshwater invertebrates must maintain higher 

internal concentrations of solutes than the medium they live in, they face physiological 

challenges in maintaining internal solute concentrations and volume against an osmotic 

gradient (Bradley 2009). As water becomes increasingly dilute, this challenge increases.  

Most experimental studies examining the effect of TDS on aquatic biota have 

primarily focused on the effects of high TDS conditions (e.g., Kefford et al. 2004; 2007). 

However, some of these same studies show that low salinity also differentially affects 

survival, growth, or reproduction of some taxa (Hassell, Kefford & Nugegoda 2006; 

Kefford et al. 2007). These studies show inverted U shaped responses of multiple 

measures of organism performance to increasing TDS, as measured by electrical 

conductivity (EC). This pattern was seen for several taxa, including Physa acuta (Kefford 

& Nugegoda 2005), Cloeon spp., Centroptilum spp., Chironomus spp. (Hassell, Kefford 

& Nugegoda 2006), Aedes aegypti (Clark, Flis & Remold 2004), Glyptophysa alicine, 

Glacidorbis spp. (Kefford et al. 2007). With the exception of Centroptilum, survival, 

growth, and reproductive success increased with increasing EC over the natural range of 

EC found in most temperate streams (i.e., EC <1000 µS/cm), and began declining at 

much higher EC levels than found in most temperate streams (ranging from 1000 – 4000 

µS/cm). The mayfly Centroptilum is an exception, increasing in survival and emergence 

up to 500 µS/cm and declining at levels higher than that. Some taxa were not affected by 

low ECs, including Paragnetina media (Kapoor 1979), Dinotoperla thwaitesi, 

Anisocentropus spp., and Plectrocnemia sp. (Kefford et al. 2007). These studies indicate 

that taxa differ in their ability to tolerate low EC conditions. Such differences may play an 

important role in structuring aquatic communities. We expect that some taxa specialize 

in inhabiting very dilute environments and have developed adaptations that increase 

their osmoregulatory abilities. Adaptations to dilute environments include a relatively 
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impermeable waxy epicuticle, dilute urine production, and ion uptake structures 

(including chloride cells, chloride epithelia, rectal gills, and papillae). Not all taxa have 

developed these structures to the same level, hence taxa would be expected to exhibit a 

range of abilities to cope with low EC environments.  

Differences in osmoregulatory ability could help explain observed distribution 

patterns, with some taxa excluded from low EC water and others inhabiting both high 

and low EC conditions. Taxa without strong osmoregulatory adaptations (i.e., soft bodied 

species or those with minimal ability to uptake ions such as some Chironomidae or 

Tipulidae) should be poor osmoregulators and should thus be restricted to higher EC 

environments. Other taxa with more impermeable integuments and ion uptake structures 

(e.g., Plecoptera) would better maintain ion and water balances, and be better able to 

live in extremely dilute environments. Differences in osmoregulatory abilities among taxa 

should be expected because of the trade-offs involved with the cost of developing strong 

osmoregulatory abilities. One such trade-off is the development of impermeable 

integuments that minimize water uptake and ion loss, but also reduce respiratory ability 

by restricting dissolved oxygen diffusion (Charmantier, Charmantier-Daures & Towle 

2009). Another trade-off is the allocation of energy to ion uptake, at both the animal’s 

surface and internally as part of the process of producing dilute urine, at the cost of other 

functions like growth and reproduction (Fiance 1978). 

Our understanding of how aquatic taxa vary in their responses to osmotic conditions 

is limited, and this limitation makes it difficult to predict how taxa osmotic ability might 

interact with stream TDS conditions to impact taxa distributions. Most previous research 

on osmoregulation has focused on terrestrial insects, crustaceans, and mosquitoes 

(Bradley 2009). These intensive studies of specific taxa have greatly increased our 

understanding of the variety of osmoregulatory mechanisms. Much work has also been 
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done on determining the upper salinity tolerances of a wide array of taxa, especially 

hyporegulators specializing in saline conditions. However, the response of only a few 

hyperregulators to low EC conditions has been examined, and these studies have often 

compared relatively extreme EC conditions (i.e., high TDS versus de-ionized water) in 

artificial settings (i.e., unfed animals in containers without flow). Low EC conditions (i.e., 

<100 μS/cm) are wide-spread among head-water streams (most commonly in 

mountains, but also in some low-land streams), and represent an important habitat. To 

establish how well different taxa tolerate low TDS conditions, and how these tolerances 

might relate to the distributions of aquatic macroinvertebrates, we need to quantify the 

responses of more taxa to low EC conditions while controlling for the effects of other 

factors (e.g., temperature, resources, and flow) that can also influence distributions. 

Understanding taxa responses to different osmotic environments is important in 

increasing our understanding of the biology of freshwater taxa, but we also need to 

predict how taxa will respond to human caused changes in TDS. Examples of biota 

being directly threatened by alteration of TDS/EC include the effects of agriculture 

(Williams 1987), mountain top mining (Pond et al. 2008), oil and gas extraction 

processes including hydraulic fracturing (Renner 2009), and coal bed methane 

production (U.S. Environmental Protection Agency 2004). Because of the evolutionary 

tradeoffs associated with osmoregulatory adaptations, taxa that have specialized in 

living in dilute environments may be at a competitive disadvantage when EC increases 

and other taxa can then invade. Also, a better understanding of how taxa respond to 

spatial variation in water chemistry could enhance the accuracy of bioassessments by 

improving the predictions of taxa occurrences on which these assessments are based 

(Hawkins, Olson & Hill 2010).  
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Our goal was to address two related questions. Do taxa vary in their response to 

naturally occurring low TDS conditions? Does this variation help explain taxa distribution 

patterns we see in nature? Our approach was to measure how life-history end points 

important to taxa persistence (i.e., survival, growth, and adult emergence) respond to 

ecologically relevant differences in TDS/EC. The restriction from low TDS environments 

seen in some taxa distributions, the results of previous studies, and the differences in 

osmoregulatory ability that we discussed earlier all led us to three expectations. The first 

is that some taxa will exhibit lower survival, growth and emergence in low EC conditions 

than in high, presumably due to weaker osmoregulatory systems. Second, we expect 

that other taxa with stronger osmoregulatory systems will show equal survival, growth 

and emergence in low and high EC conditions. Third, we expect that observed 

differences in these responses to EC conditions among taxa will help explain distribution 

patterns observed for these taxa, with taxa exhibiting poorer survival, growth, or 

emergence in dilute environments being restricted from those environments. Although 

previous work has established a direct effect of low TDS on some aquatic invertebrates, 

additional work is needed to expand our understanding of how TDS affects distributions. 

We especially need to determine if the patterns seen over large EC ranges in Australia 

(i.e., Hassell, Kefford & Nugegoda 2006; Kefford et al. 2007) still hold for smaller ranges 

more relevant in temperate North America. Examining a broad array of taxa will allow us 

to better understand the diversity of taxa responses to EC. Also, by examining the effect 

of TDS under close to natural conditions, while controlling for other indirect effects 

associated with EC, we can test if correlations between distribution patterns and EC are, 

at least in part, directly caused by TDS. 
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Materials and Methods 

General Approach 

We used two different experimental designs that both used 600 mL flow-through 

microcosms, but differed in their realism. The first was a steam-side experiment with two 

naturally occurring EC conditions (<25 μS/cm vs. > 120 μS/cm) as treatments. The 

second was a laboratory experiment in which we manipulated EC to produce two EC 

treatments (<30 μS/cm vs. > 300 μS/cm). In both settings we controlled for temperature, 

food and habitat availability, and flow. Taxa were chosen to represent different apparent 

levels of adaptation to dilute environments. To assess whether differences in observed 

low TDS tolerances were related to taxa distributions, we then compared the results of 

these experiments with published EC optima.  

 
Experimental Animals  

We selected 19 experimental taxa (Table 4-1) based on their availability (collectible 

within a 2 hour drive of either the stream-side or laboratory experiment) and suitability to 

experimental conditions. We also considered the range of apparent EC preferences of 

each taxon based on survey data collected across the western USA to ensure taxa likely 

differed in their sensitivity to EC. We identified animals at the collection sites and 

transported them back to the experiment site in stream water. Animals were held in 

stream water (< 10˚ C) and then measured and placed in microcosms within 24 hours. 

For the stream-side experiment, we tracked growth by measuring body length (from 

labrum to end of abdomen) to the nearest 0.1 mm and then converting length to mass 

using published length to mass relationships. For the laboratory experiment, we 

measured wet weights to the nearest 0.1 mg after briefly blotting animals with filter 

paper. To track individual growth and minimize the potential for animal size to bias our  



112 
 

 

Table 4-1. Experimental animals, collection sites, and numbers 

Taxa Experiment Collection Site* 

Collection 
Site EC 
(μS/cm) 

Organisms 
per 

microcosm 

Total 
Number of 
Organisms

Callibaetis Eaton, 1881 Lab Spring Hollow 280 7 84 

Chloroperlidae Stream-side Timber 22 4-5 52 

Lab Upper Blacksmith 307 5-6 66 

Drunella coloradensis 
Dodds, 1923 

Lab Temple 297 6-7 80 

Drunella doddsii 
Needham, 1927 

Stream-side Piermont 17 4 48 

Drunella grandis Eaton, 
1884 

Stream-side Negro 276 5-6 58 

Hyalella azteca 
Saussure, 1858 

Stream-side Muncy 345 5 60 

Lab Unnamed Spring 277 7 84 

Hesperoperla pacifica 
Banks, 1900 

Stream-side Bassett 21 4-5 49 

Lab Logan 308 4-6 57 

Hydropsyche Pictet, 
1834 

Stream-side Negro 276 5-6 63 

Lab Logan 308 5-7 68 

Hydroptila Dalman, 1819 Stream-side Muncy 345 5-6 69 

Isoperla Banks, 1906 Stream-side Piermont 17 5 60 

Lab Blue Pond 313 4 48 

Leptophlebiidae  Stream-side Timber 22 4-5 52 

Lab Temple 297 4 48 

Malenka Ricker, 1952 Stream-side Negro 276 6 72 

Lab Temple 297 3-4 42 

Micrasema McLachlan, 
1876 

Stream-side Kalamazoo 306 6 72 

Lab Upper Blacksmith 307 5 60 

Pagastia Oliver, 1959 Stream-side Kalamazoo 306 3-4 42 

Lab Blue Pond 313 5-6 65 

Pteronarcella Banks, 
1900 

Lab Upper Blacksmith 307 2-3 34 

Pteronarcys Newman, 
1838 

Lab Blacksmith 390 4-5 52 

Rhyacophila Pictet, 1834 Stream-side Piermont 17 4 48 

Lab Logan 308 4-5 41 

Skwala Ricker, 1943 Lab Logan 308 4-5 47 

Zapada Ricker, 1952 Lab Upper Blacksmith 307 3 18 
 

*Collection site coordinates : Bassett Ck - 39.442 N, 114.532 W, Blacksmith R - 41.624 N, 
111.796 W, Blue Pond Spring- 42.104 N, 111.497 W, Kalamazoo Ck - 39.567 N, 114.589 W, 
Logan R - 41.746 N, 111.742 W, Muncy Ck - 39.603 N, 114.569 W, Negro Ck - 39.273 N, 
114.310 W, Piermont Ck - 39.478 N, 114.586 W, Spring Hollow - 41.748 N, 111.715 W, Temple 
Fork - 41.829 N, 111.579 W, Timber Ck - 39.402 N, 114.612 W, Unnamed Spring - 41.758 N, 
111.804 W, Upper Blacksmith R. - 41.609 N, 111.586 W 
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results, we distributed animals among experimental units equally by size (i.e., placing 

equal number of large and small organisms in each microcosm). Organism densities 

ranged from 3 to 7 per microcosm (Table 4-1). All animals were provided biofilm 

conditioned rocks collected from the stream closest to each experimental site and fish 

food flakes (ad libitum) as food sources. This diet was supplemented with macroalgae 

(Monostroma) for herbivorous taxa and live Tubifex worms for predatory taxa. We 

inspected each microcosm daily and removed dead larva or emerged adults. Every 10-

14 days, we removed microcosms from the experiment and replaced rocks with freshly 

collected conditioned rocks. At this time we also recorded the status of each animal. In 

the stream-side experiment we also re-measured body lengths at these times. Animals 

that pupated were left undisturbed until they emerged or the experiment was over. If 

pupae were attached to rocks, the rocks were not replaced. If dead bodies were 

discovered intact, they were remeasured.  

 
Steam-Side Microcosm Experiment 

We conducted stream-side microcosm experiments at the confluence of the two first-

order tributaries of Piermont Creek located in an undeveloped portion of the Humboldt-

Toiyabe National Forest in the Schell Creek Range of eastern Nevada (Fig. 4-1). We 

chose this location because the two tributaries are underlain by different geologies that 

produce a natural source of both low (<25 μS/cm) and high (> 120 μS/cm) EC water at 

their confluence. Although these streams differ greatly in EC and alkalinity, they have 

similar pH (Table 4-2). Water from both streams was diverted above the experimental 

site, filtered with a 100 μm screen to minimize colonization by other organisms, and then 

gravity fed to the experiment site through ¾-inch polyethylene pipe. Because the low EC 

stream was approximately 5˚ C cooler than the high EC stream, we equalized  
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Fig. 4-1. Photograph of location of the stream-side experiment at 
Piermont Creek in the Humboldt-Toiyabe National Forest. The two 
first-order tributaries of Piermont Creek with their contrasting 
lithologies producing both low (<25 μS/cm) and high (> 120 μS/cm) 
EC water is illustrated. Photo by JRO. 

 

temperatures between treatments by heating some of the cooler water from the low EC 

stream. Heating was done by creating a second diversion on the low EC tributary 300 m 

above the main diversion and solar heating this water by passing it through ¼-inch 

polyethylene hoses laid out on an exposed slope. This heated water was added to water 

from the main diversion in a header tank to raise its temperature to equal that of the 

northern tributary. We adjusted the flow of heated water daily as needed to keep the 

 
Table 4-2. Lithology and water chemistry of tributaries of Piermont Creek, NV

 Southern Tributary Northern Tributary 
Dominant Lithology Quartzite Limestone 
Specific Conductivity < 25 μS/cm2 > 120μS/cm2 
Alkalinity 20 mg/L CaCO3 120 mg/L CaCO3 
pH 7.8 8.0 
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temperature of the two treatments equal. Experimental units were shaded to minimize 

heating of water as it passed through the experimental units. Temperatures were thus 

allowed to fluctuate naturally on a daily and seasonal basis (mean = 8˚ C, range: 1.1˚ - 

17.4˚ C). Flow from the header tanks was set at 15 mL/s and monitored daily.  

We used a flow through microcosm design to minimize changes in water chemistry 

and water quality resulting from animal feeding or excretion and to approximate natural 

conditions within the microcosms. We constructed microcosms from 600 mL plastic food 

storage containers, with the top of each container cut open and sealed with a screen to 

allow air flow into the microcosm. 1-mm screen was used, except for taxa with small 

adults for which we used 500 μm screens. We placed two stones (64 to 90 mm wide) in 

each microcosm as both a food source and substrate. Thirteen microcosms (one per 

taxon) were connected in series as a single experimental unit with each microcosm 

separated by a 500 μm screen (Fig. 4-2a). Except for a <1˚C increase in temperature 

along the length of a series, all other factors remained constant. We used twelve 

experimental units, grouped into six blocks of two experimental units each, with EC 

treatments assigned randomly to experimental units within each block (Fig. 4-2b). We 

arranged taxa in the same order in both experimental units within a block, and then 

systematically changed the order between blocks to achieve maximal interspersion of 

taxa. This interspersion ensured that across blocks all taxa were located equally often at 

the top and bottom of the series of microcosms. The stream-side experiment ran for 83 

days (28 July to 20 October 2004).  

 
Laboratory Microcosm Experiment 

We used the same microcosms in the laboratory experiment as we used in the 

steam-side experiment, but changed how we created the two EC treatments and how 
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microcosms were arranged (Fig. 4-3). For the high EC treatment, we used unchlorinated 

well water pumped on the Utah State University campus with water chemistry similar to 

the nearby Logan River (EC > 300 μS/cm and alkalinity > 4000 μeq/L CaCO3). For the 

low EC treatment, we diluted well water with distilled water until it had an EC< 30 μS/cm. 

Water was circulated from a header tank, through all of the microcosms, into a 19L glass 

aquarium, and then back into the header tank. Water was lifted to the header tank by 

bubbling compressed air into the bottom of small tubes connecting the aquarium and the 

header tank, which also aerated the water. We adjusted flow rates by controlling the 

amount of compressed air released so that flow matched the same 15mL/s rate used in 

the stream-side experiment. Water temperatures were maintained at a constant 10˚ C by 

placing the aquaria in flow-through baths of 10˚ C well water. We monitored EC weekly, 

and added additional distilled or well water to the aquaria to maintain the EC difference. 

We also used twelve experimental units in this experiment, grouped into six blocks of 

two experimental units each, with treatments assigned randomly within each block. In 

this experiment, we arranged microcosms in parallel instead of in series (Fig. 4-3b) and 

kept taxa order the same within each block, but systematically changed the order 

between blocks to maximize spatial interspersion of taxa in the experiment. All 

experimental units were exposed to the same 16:8·h light:dark photoperiod. The 

laboratory experiment ran for 55 days (3 September to 21 November 2005). 

 
Relationship between Taxa Response to EC  
Conditions and Distributions 

To assess whether differences in response to EC conditions are related to 

distributions, we compared observed differences in survival between treatments with 

taxa EC optima derived from a field survey. We quantified taxa response to EC  
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Fig. 4-2. Diagram of stream-side experiment 
design. (a) side view of single experimental 
unit with details and (b) plane view showing 
6 of 12 experimental units. Letters A-M 
indicate micorcosms occupied by different 
taxa. Taxa order is rotated systematically 
between blocks and high and low EC 
treatments are assigned randomly within 
each block. 

 Fig. 4-3. Diagram of laboratory 
experiment design. (a) side view of 
single experimental unit with details and 
(b) plane view showing 6 of 12 
experimental units. Letters A-P indicate 
micorcosms occupied by different taxa. 
Taxa order is rotated systematically 
between blocks and high and low EC 
treatments are assigned randomly within 
each block. 
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conditions as the difference in mean survival times in the high and low EC treatments. 

Optima calculated from field data provide a way of quantifying how taxa distributions 

vary with EC conditions (Blocksom & Winters 2006). We used the EC optima expressed 

as weighted average abundances provided by Black, Munn & Plotnikoff (2004). Black, 

Munn & Plotnikoff (2004) provided optima for taxa that best matched our experiment in 

terms of taxonomy and location. In instances where Black et al. did not list an optima 

matching a taxon we used, we either applied the optima listed for a coarser taxonomic 

resolution (i.e., family or higher), or used the optima of a closely related taxon. We were 

able to match optima with 17 of the taxa used in our experiments (all except Pteronarcys 

and Pteronarcella). We determined the direction and strength of this relationship by 

regressing EC optima against survival differences, i.e., we developed a model that 

predicted EC optima (distribution) from experimentally determined survivorship under 

low and high EC conditions. 

 
Statistical Analysis  

We used the area under Kaplan-Meier survival curves to determine mean survival 

times in days and then used this data to calculate differences in survival between high 

and low EC treatments. Because some taxa did not experience 50% mortality, medians 

could not be used. We used Mantel-Haenszel tests to test for significance in survival 

between treatments. We used the R package “Survival” to conduct survival analyses. 

We tested for differences in the percentage of each taxon that successfully emerge as 

adults in each treatment by applying the Fisher exact test to a two by two contingency 

table. We calculated growth rates both as the change in body length (mm/day, stream-

side only) or mass (mg/day, both stream-side and laboratory) with time, and as specific 

growth (G, mg/(mg*day)) calculated as:  
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ln Mass Mass⁄

time	interval
	∗ 100 

(Hawkins 1986). Where appropriate, data were log10 transformed to improve the 

assumptions of normality and homogeneity of variance. We used ANCOVA to test for 

significant differences in growth rates between treatments, with initial mass as the 

covariate to control for the effect of size on growth rates. We used the R package “stats” 

to perform emergence and growth analyses.  

 
Results 

 
Survival 

The survival results met our expectations that some taxa would be sensitive to EC 

and others would be insensitive. The majority of taxa did not have significant differences 

in survival between treatments (Table 4-3), with 9 of these having less than 5 day 

difference in survival. Only 4 taxa had significantly different survival between the two 

treatments. Except for three taxa in the laboratory experiment, mean survival times 

ranged from 3 to 9 weeks in the streamside experiment and from 3 to 7 weeks in the 

laboratory experiment. In the laboratory experiment, Drunella coloradensis and Pagastia 

had mean survival times of less than a week because many individuals emerged as 

adults shortly after the start of the experiment. Isoperla had a mean survival of 10 days 

in the laboratory experiment, and all animals died within 19 days. Drunella grandis, 

Hyalella azteca, and Malenka all had significantly better survival in high EC conditions 

than in low EC conditions. Hesperoperla pacifica had significantly longer survival in low 

EC conditions, but only in the stream-side experiment. The difference in survival for H. 

pacifica in the laboratory experiment was less than 1 day. Of the 10 taxa that were used 
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in both the stream-side and laboratory experiments, H. pacifica was also the only taxon 

with significantly different results between experiments.  

 
Table 4-3. Mean survival (in days) in high and low EC treatments. Standard errors are in 
parentheses, and data shown in bold where significant at a 0.05 level 

Taxa Experiment 
High EC Mean 
Survival (SE) 

Low EC Mean 
Survival (SE) 

High - Low 
Survival Diff p-value 

Callibaetis Lab 43.3 (1.9) 40.3 (2.4) 3.0 0.41 

Chloroperlidae Stream-side 48.3 (5.0) 46.9 (5.8) 1.5 0.73 

 Lab 28.2 (2.7) 29.7 (2.9) -1.5 0.53 

Drunella coloradensis Lab 5.8 (0.4) 5.7 (0.3) 0.1 0.73 

Drunella doddsii Stream-side 34.8 (2.6) 32.8 (2.7) 2.0 0.58 

Drunella grandis Stream-side 35.2 (4.7) 20.9 (1.8) 14.3 0.03 

Hyalella azteca Stream-side 62.0 (4.3) 40.0 (3.8) 22.0 0.00 

 Lab 35.5 (2.1) 17.5 (1.8) 18.0 0.00 

Hesperoperla pacifica Stream-side 26.2 (4.1) 42.9 (6.3) -16.7 0.04 

 Lab 30.4 (2.6) 29.7 (2.8) 0.7 0.88 

Hydropsyche Stream-side 31.5 (4.6) 29.8 (3.6) 1.7 0.53 

 Lab 21.0 (2.6) 27.2 (2.6) -6.2 0.11 

Hydroptila Stream-side 24.7 (2.1) 28.2 (2.4) -3.5 0.56 

Isoperla Stream-side 26.3 (2.8) 22.8 (2.5) 3.5 0.53 

 Lab 10.0 (1.2) 10.4 (1.3) -0.3 0.86 

Leptophlebiidae Stream-side 44.0 (6.3) 48.3 (5.7) -4.3 0.80 

 Lab 22.3 (3.0) 25.3 (2.8) -3.0 0.49 

Malenka Stream-side 62.2 (4.3) 52.1 (4.6) 10.1 0.05 

 Lab 23.3 (3.2) 14.9 (2.6) 8.5 0.05 

Micrasema Stream-side 45.5 (4.4) 37.2 (4.0) 8.2 0.15 

 Lab 35.9 (2.6) 38.9 (2.2) -3.1 0.23 

Pagastia Stream-side 46.3 (5.8) 38.7 (5.9) 7.6 0.23 

 Lab 14.6 (1.2) 14.3 (1.1) 0.3 0.92 

Pteronarcella Lab 41.8 (2.4) 43.7 (2.5) -1.9 0.29 

Pteronarcys Lab 49.0 (3.1) 42.7 (3.8) 6.3 0.21 

Rhyacophila Stream-side 39.6 (5.4) 47.0 (4.7) -7.4 0.21 

 Lab 23.3 (4.0) 22.1 (3.4) 1.2 0.80 

Skwala Lab 27.0 (3.3) 23.5 (3.3) 3.5 0.24 

Zapada Lab 41.4 (1.5) 30.8 (5.9) 10.7 0.21 
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Adult Emergence  

The emergence results also agreed with our expectations that emergence success of 

taxa would vary in response to the treatments. The only significant differences in 

emergence were seen in the stream-side experiment. More Micrasema emerged in the 

high EC treatment and more H. pacifica emerged in the low EC treatment (Table 4-4). 

However, differences in emergence for these two taxa were not significantly different 

between treatments in the laboratory experiment. Emergence of the other 16 taxa with 

terrestrial adult stages was not significantly different between treatments. Emergence 

varied from a high of 66% (D. coloradensis) to no emergence, with < 2% of individuals 

emerging in 6 taxa (i.e., Callibaetis, Chloroperlidae, Hydropsyche, Pteronarcella, 

Pteronarcys, and Skwala). Across treatments, we observed almost twice the proportion 

of emergence in the stream-side experiment (17%) than in the laboratory experiment 

(9%), probably as a consequence of the length and timing of the experiments.  

 
Growth 

None of the taxa tested had significantly greater growth in the high EC treatment 

than the low EC treatment, and only Drunella doddsii had significantly greater growth in 

the low EC treatment than the high EC treatment (Table 4-5). Contrary to our 

expectations that less efficient osmoregulators would have slower growth in low EC 

treatments, 10 of the 19 taxa showed greater growth in low EC conditions, although 

these differences were not significant at p < 0.05. These 10 taxa with greater growth in 

low EC conditions included 3 of the 4 taxa that had greater survival or emergence in high 

EC conditions (D. grandis, H. azteca, and Micrasema).  
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Table 4-4. Emergence in high and low EC treatments. Data shown in bold 
where significant at a 0.1 level 

Taxa Experiment 
High EC % 
Emergence

Low EC % 
Emergence p-value 

Callibaetis Lab 0 2 1.00 
Chloroperlidae Stream-side 0 0 1.00 
 Lab 0 3 1.00 
Drunella 
coloradensis 

Lab 66 62 0.82 

Drunella doddsii Stream-side 46 42 1.00 
Drunella grandis Stream-side 28 17 0.53 
Hesperoperla 
pacifica 

Stream-
side 

0 20 0.05 

 Lab 0 0 1.00 
Hydropsyche Stream-side 0 0 1.00 
 Lab 0 0 1.00 
Hydroptila Stream-side 12 29 0.13 
Isoperla Stream-side 27 20 0.76 
 Lab 4 8 1.00 
Leptophlebiidae Stream-side 4 11 0.61 
 Lab 0 04 1.00 
Malenka Stream-side 39 19 0.12 
 Lab 0 5 1.00 
Micrasema Stream-

side 
47 25 0.08 

 Lab 0 3 1.00 
Pagastia Stream-side 24 10 0.41 
 Lab 41 33 0.61 
Pteronarcella Lab 0 0 1.00 
Pteronarcys Lab 0 0 1.00 
Rhyacophila Stream-side 0 0 1.00 
 Lab 0 0 1.00 
Skwala Lab 0 0 1.00 
Zapada Lab 22 44 0.62 

 

 
 
 
Relationship between Taxa Response to EC  
Conditions and Distributions 

EC optima were significantly related to survival differences between high and low EC 

conditions for both the stream-side experiment (p=0.0028) and the laboratory experiment 
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(p=0.0017) (Fig. 4-4). This relationship was positive, with taxa having longer survival 

times in high EC conditions also having higher EC optima. Survival differences from the 

stream-side experiment explained 60% of the variability in EC optima, whereas the 

survival differences from the laboratory experiment explained 48%. We omitted D. 

grandis from this analysis as an outlier because the EC optima used for this taxon was 

one developed for the family Ephemerellidae, which is unlikely to adequately describe 

the distribution of this species given the extensive ecological diversity within this family 

(Hawkins 1984; 1985; 1986). Taxa that had significant differences in survival (e.g.,  

Fig. 4-4. Relationship between survival differences in high and low EC conditions and 
EC optima derived from field surveys by Black, Munn & Plotnikoff (2004). 
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Malenka and H. azteca) also had the greatest EC optima, indicating that these taxa 

seldom occur in low EC environments. 

 
Discussion 

The weight of evidence supports the hypothesis that the fitness of stream 

invertebrate taxa is affected by TDS and that these differences in fitness affect spatial 

distributions. Survival experiments by Willoughby & Mappin (1988) found that 

Ephemerella ignita and Amphinemura sulcicollis were tolerant of low TDS water, but 

Baetis muticus and Beatis rhodani were not. Kefford et al. (2007) reviewed previous 

studies examining salinity effects on invertebrates and found that of the 11 taxa that had 

been tested for sensitivity to low TDS conditions, 3 showed detrimental effects of low 

TDS but the remainder were unaffected. Our tests on 19 additional taxa are consistent 

with these earlier studies, and 25% of the taxa we tested exhibited significant differences 

in either survival or emergence between our two treatments. Because we controlled for 

differences in temperature, habitat, and food sources, we conclude that these 

differences in survival and emergence were due to some direct effect of differences in 

EC. By doubling the number of taxa investigated and examining responses over 

commonly observed EC differences, our tests show it is highly likely that ecologically 

significant variation in fitness occurs among taxa exposed to low to moderate levels of 

TDS. 

Does this variation in taxa response to low TDS conditions help explain taxa 

distribution patterns we see in nature? Experimental results are often interpreted as 

explaining distributions, but rarely are taxa responses to TDS directly related to their 

distributions. Willoughby & Mappin (1988) did select test taxa and experimental 

conditions to directly test whether the observed distributions of these taxa in the River 
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Duddon corresponded to their survival when exposed to different TDS conditions found 

in the catchment. They found that the responses to TDS were consistent with their 

observations from the field for 3 taxa (i.e., taxa not found in low TDS conditions had 

poorer survival in low TDS conditions and taxa found in low TDS conditions had equal or 

better survival in low TDS conditions). One of their taxa not found in low TDS conditions 

(E. ignita) had lower survival in low TDS conditions (consistent with expectations), but 

the authors concluded the differences were not significant. Our comparison of observed 

survival differences in high and low EC conditions and field derived EC optimum 

revealed a fairly strong correlation between them. Taxa that were sensitive to low EC 

treatments in our experiments had higher EC optima indicating they are found primarily 

in high EC conditions. This correlation supports the notion that differences in the ability 

of taxa to persist under low TDC conditions partly determine distributions of taxa. Some 

of the unexplained variation is probably associated with the level of taxonomic resolution 

we had to use. It is unlikely that all of the species used in our experiments matched 

those collected by Black, Munn & Plotnikoff (2004), and differences in optima among 

species within the same genus would have contributed unexplained variance in our 

analyses. 

In contrast with survivorship and emergence, none of the taxa we tested had faster 

growth in high EC conditions than low. These results are consistent with previous work 

that examined differences in growth between animals exposed to low and high EC 

treatments (Eggert & Burton 1994; Hassell, Kefford & Nugegoda 2006). This agreement 

among separate studies supports the conclusion that EC conditions do not affect growth, 

although two alternative explanations should also be considered. First, the precision of 

mass estimates made on aquatic invertebrates may not be sufficient to detect 

ecologically significant differences in growth rates. Error in mass estimated by wet 
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weight has been shown to range from 4-15 % of the mean (Marcus, Sutcliffe & 

Willoughby 1978) and by up to 20% for estimates from body lengths (Benke et al. 1999). 

Second, estimates of growth based on wet weights or lengths are susceptible to bias 

from increased water uptake in taxa unable to adequately control water flow and 

regulate their volume. Additional water uptake by weak osmoregulators could explain 

why we observed taxa with decreased survival and emergence in low EC conditions to 

have greater apparent growth in the same conditions. Future work examining how 

differing EC conditions affect growth should adopt a paired cohort approach that would 

allow mass to be measured directly as ash free dry mass and control for both of these 

effects. 

Differences in taxa response to variation in TDS conditions are usually attributed to 

variation in osmoregulatory ability among taxa (Willoughby & Mappin 1988; Hassell, 

Kefford & Nugegoda 2006; Kefford et al. 2007). Only two of the taxa we tested have had 

their osmotic abilities quantified, and their survivorship and emergence was consistent 

with measurements of osmotic performance. Colby (1972) concluded that Pteronarcys 

was a strong osmoregulator relative to other taxa, and as expected Pteronacrys showed 

no difference in survival in our experiments. Buchwalter, Jenkins & Curtis (2002) showed 

Callibaetis to be a moderate osmoregulator and it showed only minor differences in 

survival. Unfortunately, direct measurements of osmotic abilities are rare in the literature 

and are focused mostly on various mosquitoes. Demonstrating that differences in 

survivorship and emergence in different TDS/EC conditions are caused by 

osmoregulatory differences will be difficult until the osmoregulatory abilities of more taxa 

are measured.  

Weak osmoregulatory ability could explain the better performance of some taxa in 

high than low TDS conditions, but not the better performance in low TDS conditions we 
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observed for H. pacifica (Table 4-3 and Fig. 4-4). Being a strong osmoregulator should 

not decrease performance at high ECs, until the environmental EC increases past an 

animal’s hemolymph concentration and the osmotic gradient switches direction, which 

occurs at much higher EC conditions than we used in either experiment. In natural 

streams with high EC, poor survival and emergence of strong osmoregulators could be 

the result of increased competition with taxa that do not have to allocate energy into 

osmoregulatory structures and processes or differences in resource availability in low 

and high EC environments. However, our control of these factors in our experiments 

excludes these mechanisms. The fact that we only observed poor survival and 

emergence in high EC conditions in the stream-side experiment, and not in the 

laboratory experiment, indicates the difference is likely related to one of the natural water 

sources. Water chemistry analysis did not indicate any contamination by heavy metals or 

nutrients. The presence of taxon-specific pathogens in the high EC water source is a 

possible explanation. For example, some nematodes and fungi are known to specialize 

in parasitizing certain genera of the family Perlidae, and they are also negatively affected 

by low EC conditions (Micieli et al. 2012; Wood-Eggenschwiler & Barlocher 1983). As 

the ecology of pathogens affecting aquatic invertebrates becomes better understood, 

this possibility can be more fully assessed. 

Previous studies have shown that taxa responses to low TDS conditions can vary 

from none to significant in terms of survival and emergence, albeit for small number of 

taxa. Our work confirms these findings across a larger range of taxa, even when tested 

against a much smaller but more ecologically relevant range of TDS. We also show that 

differences in survival under different EC conditions can predict observed variation in EC 

optima, consistent with the mechanistic hypothesis that a taxon’s distribution is related to 

its ability to withstand osmotic stress. The taxa responses to TDS we observed also 
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agree with our limited understanding of osmoregulatory variation among taxa, but to 

assess if osmoregulation causes these taxa responses will require a much better 

understanding of variation in osmoregulatory ability among taxa. Similar experiments on 

additional taxa are also needed to broaden our understanding of which taxa are 

sensitive to low TDS conditions. 

Understanding how environmental conditions influence habitat suitability for different 

taxa is a primary goal of ecology and a cornerstone of bioassessment (Hawkins 2006). 

Measures of organism habitat preference, like EC optima, allow field survey data to be 

used to assess potential causes of impairment or to establish water quality criteria. As 

an example of the latter, the USEPA has recently established benchmarks for allowable 

stream EC in the Appalachian region based on the response of multiple taxa to EC 

conditions (USEPA 2011). These applications of optima assume a causal relationship 

between optima and an organism’s response to its environment. This study provides 

experimental evidence that some taxa are directly affected by stream EC conditions, and 

this effect is related to the EC optima observed for these taxa. Improving our 

understanding of how aquatic biota respond to different osmotic challenges will allow for 

stronger causal inferences of the impacts of modifying EC, and enable predictions of 

how future changes in EC caused by climate or land use changes might influence 

distributions of individual aquatic taxa and entire communities. 
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CHAPTER 5 

CONCLUSION 

My research has advanced our understanding of how catchment geology influences 

streams and their biota in two ways. The first is the development of models predicting 

natural water chemistry from geology and other environmental factors. The second is 

showing how differences in EC caused by geology and other factors influences the 

distribution of aquatic macroinvertebrates. In addition to increasing our understanding of 

how geology influences water chemistry, these models also have direct application to 

assessing stream ecologic health. 

The development of models predicting natural water chemistry help quantify how 

geologic and environmental predictors interact to produce spatial differences in water 

chemistry. Geology is known to strongly influence many of the constituents of water 

chemistry, but the development of empirical predictive models allowed me to quantify the 

influence of geology relative to other environmental factors (Table 2-6). My analyses 

showed that, at a regional scale, geology has a greater influence on major ion 

concentrations and EC than climate, soils, vegetation, or topography. By relating a 

combination of spatial and temporal variables to stream nutrient concentrations, I was 

able to determine which factors likely have the greatest influence on TP and TN 

concentrations (Tables 3-2 and 3-3). Inferences of the relative strength of different 

predictors in these models should be made cautiously, because the majority of variation 

in nutrient concentrations remains unexplained. However, TP was most heavily 

influenced by the P content of the underlying rock, as expected. Contrary to the 

conclusions of Holloway et al. (1998), rock N was not related to stream TN indicating 

limited influence of rock N on stream TN concentrations.  
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The empirical approach I used to model stream chemistry as a function of geology 

and other environmental factors indicated some processes may be more important than 

previously understood. For example, temperature was the third most important predictor 

of the concentration of major ions in stream water, presumably due to the effects of 

increasing temperature on evapo-concentration and weathering rates. This finding 

implies that as climates become warmer in the future, stream chemistries will change. 

The effects of atmospheric deposition in wet and dry forms and as dust are also not 

generally included in most process based models, but my empirical models clearly 

showed effects of deposition on all constituents of water chemistry examined. The data 

on sources and sinks used in my empirical models, such as atmospheric deposition or 

rock chemistry, can also be used in process based models to account for spatial 

differences among catchments, which should reduce their dependence on local 

calibration and increase their transferability among catchments.  

I also developed predictive models that showed that geologically driven differences 

in stream EC accounted for the majority of the variation in the EC optima of 19 

macroinvertebrate taxa (Figure 4-3). EC optima are a measure of how macroinvertebrate 

distributions respond to differences in stream EC. The observed strength of this 

relationship is evidence of geology’s influence on macroinvertebrate distributions. This 

relationship between macroinvertebrates and geologically driven differences in water 

chemistry provides insight into the relative importance of basic ecological processes that 

influence macroinvertebrate distributions. Because of geology’s role in creating diverse 

chemical habitats, streams across a range of geologies should be conserved to 

maximize the number of taxa protected. 

Predictive models not only increase our understanding of how geology and other 

environmental factors interact to produce different water chemistries and 
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macroinvertebrate distributions, but can also be used to assess water quality. 

Predictions of water chemistry expected under natural conditions can be compared 

directly with current water chemistry to assess if water quality has been altered. 

Comparing stream EC with predicted EC could help determine how much land uses like 

mountain top removal / valley fill operations have changed stream chemistry. Water 

chemistry predictions can also be used to improve bioassessments. Because metrics 

used in bioassessments depend on predicting some benchmark biological condition to 

compare with current conditions, increasing the accuracy of these predicted benchmarks 

will increase the accuracy of the resulting biologic inferences. Current bioassessments 

largely ignore water chemistry in establishing benchmarks because there has not been 

any method to accurately predict background water chemistry. My predictive models 

address this need, and should lead to more accurate bioassessments in the future. 

Predictions of water chemistry can also improve the selection of reference sites used in 

bioassessment. Currently, reference sites are chosen based on regional thresholds for 

various water chemistry components (i.e., SO4, Cl, TN, and TP). Site specific predictions 

of background concentrations can be used instead as the benchmarks used to assess if 

a site is reference quality. By accounting for unexplained variance, predictions of natural 

nutrient concentrations should result in more appropriate site-specific nutrient criteria. 

Accounting for natural spatial variation in nutrient concentrations should produce criteria 

that are both more attainable and better protective than current criteria that only account 

for natural variation using regional classifications. 

The maps of rock chemical and physical characteristics I created should also be 

useful in a wide range of ecological applications beyond aquatic ecology. Few studies 

have used geologic data to predict diversity and distributions, even though geology is 

recognized as one of the abiotic factors controlling taxonomic diversity and distributions 
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of many terrestrial plants and animals (Anderson and Ferree 2010). One of the reasons 

geologic data has not been used is the nature of geologic maps. Geologic maps 

primarily characterize lithology in terms of its age, structure, and formative process 

instead of current chemical and physical properties needed for ecologic prediction. My 

maps of geologic chemical and physical properties should be much more relevant 

predictors of the abundance and distributions of terrestrial plants than many of the 

coarse surrogates used in existing models (sensu Elith and Leathwick 2009). 

Future work on modeling water chemistry should focus both on improving predictions 

and on expanding the number of water chemistry constituents covered. Including 

temporally and spatially specific estimates of catchment discharge has the greatest 

potential for improving model performance because stream discharge greatly influences 

solute concentrations in streams and is not directly accounted for in my models. These 

estimates require a method for estimating discharge in ungaged catchments, which has 

been the focus of hydrologists for the last decade (Sivapalan et al. 2003). As estimates 

of discharge become available, including them will both improve water chemistry 

predictions and also allow for predictions to be made at other than base-flow conditions. 

The poor predictive power of my TN model indicates that additional predictors are 

needed to better account for both sources (i.e., a reliable measure of dry deposition) and 

sinks (i.e., better estimates of denitrification and uptake). My nutrient predictive models 

might also be improved by accounting for the spatial arrangements of sources and sinks 

of nutrients relative to each other in time and space. Sinks, such as soils with greater 

potential for denitrification, would have a greater effect on the amount of nutrients 

entering streams if they are located between source areas and the stream channel. 

Other constituents of water chemistry affecting stream biota or being used as indicators 

of water quality should be modeled using these same approaches (e.g., Si, Al, Fe, Na, 
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Cl, and K). Si, K, and Fe can be limiting resources for biota (e.g., Si is needed by 

diatoms, K is needed by aquatic macrophytes and fungi, and many anaerobic microbes 

use Fe as an electron acceptor). Na, Cl, and Al also can vary with natural sources (either 

geologic or marine) and can be significantly increased by human activities leading to 

toxic effects on stream biota and reduced water quality for human use. Modeling these 

additional chemical constituents could then be used to predict spatial variation in aquatic 

assemblages other than macroinvertebrates and support a more complete assessment 

of water quality.  
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Appendix A - Potential Predictors Evaluated for Nutrient Model 

Table A. Potential Predictors Evaluated for Nutrient Model 

Type Variable Units Data Source TPa TNa

Geology Catchment mean & point whole rock 
CaO 

% Olson & 
Hawkins 2012b C 

 
 Catchment mean & point whole rock 

MgO 
% Olson & 

Hawkins 2012   
 Catchment mean & point whole rock S % Olson & 

Hawkins 2012   
 Catchment mean & point unconfined 

compressive strength 
MPa Olson & 

Hawkins 2012   
 Catchment mean & point log 

geometric mean hydraulic conductivity
x10-6 m/s Olson & 

Hawkins 2012   
 Catchment mean geometric mean 

hydraulic conductivity 
x10-6 m/s Olson & 

Hawkins 2012   
 Catchment mean & point whole rock 

P2O5 
% Olson & 

Hawkins 2012 
C 

 
 Catchment mean & point whole rock 

N 
% Olson & 

Hawkins 2012   
 Catchment mean whole rock NH4 % This study 

 Catchment Coefficient of Variation of 
rock CaO 

% Olson & 
Hawkins 2012   

 Catchment Coefficient of Variation of 
rock MgO 

% Olson & 
Hawkins 2012   

 Catchment Coefficient of Variation of 
rock SO 

% Olson & 
Hawkins 2012   

 Catchment Coefficient of Variation of 
rock P2O5 

% Olson & 
Hawkins 2012   

 Catchment Coefficient of Variation of 
rock N 

% Olson & 
Hawkins 2012   

 Catchment areal percent underlain by 
mafic volcanic rocks 

% Integrated 
geologic mapc.   

 Catchment areal percent underlain by 
volcanic rocks 

% Integrated 
geologic map  

C 
 

Temporal Year of sample year Water Chem 
Datad   

 Day of year sample collected day of 
year 

Water Chem 
Data  

C 
a. Indicates if variable was selected for final model. “C” indicates catchment level variable 

selected, “P” indicates point level variable selected.  
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Table A. Continued. 

Type Variable Units Data Source TP TN 

Climate Catchment mean & point of mean 
1971-2000 annual precipitation 

mm/year PRISMe 
  

 Catchment mean of mean 1971-2000 
annual min monthly precipitation 

mm/ 
month 

PRISM 
  

 Catchment mean of mean 1971-2000 
annual max monthly precipitation 

mm/ 
month 

PRISM 
  

 Catchment mean of mean June-Sept 
1971-2000 monthly precipitation 

mm/ 
month 

PRISM 
  

 Catchment mean of mean 1971-2000 
annual temperature 

˚C PRISM 
  

 Catchment mean of mean 1971-2000 
annual min monthly temperature 

˚C PRISM 
P C 

 Catchment mean of mean 1971-2000 
annual max monthly temperature 

˚C PRISM 
  

 Catchment mean of mean 1961-1990 
first & last day of freeze 

day of 
year 

PRISM 
  

 Catchment mean of mean 1961-1990 
annual number of wet-days 

days/year PRISM 
 

C 

 Catchment mean of mean 1961-1990 
annual relative humidity 

% PRISM 
C 

 
 Catchment mean of mean 1961-1990 

annual max number of wet-days 
days/year PRISM 

  
 Catchment mean of mean 1961-1990 

annual min number of wet-days 
days/year PRISM 

  
 Catchment mean of mean 

precipitation over two months prior to 
the sample 

mm/ 
month 

PRISM 

 
C 

 Catchment mean of mean 
precipitation over the year prior to the 
season sample was taken 

mm/ year PRISM 
C 

 

 Catchment mean of mean 
precipitation over the month of the 
sample 

mm/ 
month 

PRISM 

  

 Catchment mean of mean 
precipitation over the month prior to 
the sample month 

mm/ 
month 

PRISM 

  

 Catchment mean of mean 
precipitation occurring as snow over 
the year prior to the sample 

mm/year PRISM 

  

Geography Latitude degrees Water Chem 
Data   

 Longitude degrees Water Chem 
Data   

 Level II Ecoregion Name CEC Mapf Cg
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Table A. Continued. 

Type Variable Units Data Source TP TN 

Atmospheric 
Deposition 

Catchment mean of mean 1994-2006 
annual precipitation-weighted mean 
Ca concentration 

mg/l NADPh 
C 

 

 Catchment mean of mean 1994-2006 
annual precipitation-weighted mean 
Mg concentration 

mg/l NADP 

  

 Catchment mean of mean 1994-2006 
annual precipitation-weighted mean 
Na concentration 

mg/l NADP 

 
C 

 Catchment mean of mean 1994-2006 
annual precipitation-weighted mean Cl 
concentration 

mg/l NADP 

  

 Catchment mean of mean 1994-2006 
annual precipitation-weighted mean 
SO4 concentration 

mg/l NADP 

 
C 

 Catchment mean of mean 1994-2006 
annual precipitation-weighted mean 
NO3 concentration 

mg/l NADP 

 
C 

 Catchment mean of mean 1994-2006 
annual total inorganic nitrogen (TN) 
wet deposition 

kg/ha NADP 

  

 Catchment mean of mean 2002-2006 
annual total inorganic nitrogen (TN) 
wet & dry deposition calculated from 
CMAQ model using Watershed 
Deposition Tool  

lbs/ 
acre 

CMAQi 

  

Soil Catchment mean & point available 
water capacity 

fraction STATSGOj 
C 

 
 Catchment mean & point bulk density g/cm3 STATSGO C 
 Catchment mean & point soil 

erodibility (K factor) 
dimensionl
ess 

STATSGO 
C 

 
 Catchment mean & point organic 

matter content 
% weight STATSGO 

  
 Catchment mean & point soil 

permeability 
inches/ hr STATSGO 

  
 Catchment mean & point soil depth m STATSGO 
 Catchment mean & point soil pH pH STATSGO 
 Catchment mean water table depth m STATSGO 
 % Catchment area in each of 8 soil 

orders (Alfisol, Aridisol, Andisol, 
Entisol, Inceptsol, Mollisol, Spodosol, 
or Ultisol) 

% STATSGO 

Ck

 

 Catchment mean soil organic carbon 
to 1 m depth 

kg-C/m2 IGBP-DIS Soil 
Datal 

C 
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Table A. Continued. 

Type Variable Units Data Source TP TN
Lakes &  % Catchment area covered by lakes % NHDm 

Wetlands % Catchment area covered by lakes % NHD 

 % Catchment area covered by open 
water 

% NLCDn 
  

 Area of largest lake in catchment m2 NHD 

 Flow weighted (using flow 
accumulation) lake area index 

dimensionl
ess 

NHD 
  

 Flow weighted (using flow 
accumulation) largest lake area index 

dimensionl
ess 

NHD 
  

 % Catchment area covered by 
wetland 

% NHD 
  

 % Catchment area covered by 
wetland 

% NLCD 
  

 % Catchment area covered by 
wooded wetland 

% NLCD 
  

 % Catchment area covered by 
herbaceous wetland 

% NLCD 
  

 Area of largest wetland in catchment m2 NHD 

 Flow weighted (using flow 
accumulation) wetland area index 

dimensionl
ess 

NHD 
  

 Flow weighted (using flow 
accumulation) largest wetland area 
index 

dimensionl
ess 

NHD 

  

 % Catchment area covered by lakes & 
wetlands 

% NHD 
  

 % Catchment area covered by open 
water or wetlands 

% NLCD 
  

 Area of largest lake or wetland in 
catchment 

m2 NHD 
C 

 
 Flow weighted (using flow 

accumulation) lake & wetland area 
index 

dimensionl
ess 

NHD 

  

 Flow weighted (using flow 
accumulation) largest lake or wetland 
area index 

dimensionl
ess 

NHD 

  

Topography Catchment elevation mean, min, max, 
and std deviation 

m NEDo 
  

 Catchment elevation relief ratio dimensionl
ess 

NED 
  

 Catchment shape ratio (catchment 
area : length) 

dimensionl
ess 

NED 
  

 Catchment area km2 NED 

 Catchment mean channel slope % NED C 
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Table A. Continued. 

Type Variable Units Data Source TP TN 

N-fixing 
Plants 

Catchment areal coverage of 
LANDFIRE Biophysical Settings 
where Alnus rubra is predicted to be 
dominant 

% LANDFIREp 

 
C 

 Catchment areal coverage of 
LANDFIRE Biophysical Settings 
where Alnus rubra is predicted to 
occurs 

% LANDFIRE 

  

 Catchment areal Alnus rubra 
coverage from LEMMA  

% LEMMAq 
  

 Catchment areal coverage of 
LANDFIRE Biophysical Settings 
where any moderate N-fixing plant is 
predicted to occur 

% LANDFIRE 

  

 Catchment areal coverage of 
LANDFIRE Biophysical Settings 
where Alnus incana is predicted to 
occur 

% LANDFIRE 

  

 Catchment areal coverage of 
LANDFIRE Biophysical Settings 
where Ceanothus velutinus is 
predicted to occur 

% LANDFIRE 

  

 Catchment areal coverage of 
LANDFIRE Biophysical Settings 
where Prosopis glandulosa is 
predicted to occur 

% LANDFIRE 

  

 Occurrence of Alnus rubra at sample 
point 

Y/N LANDFIRE 
  

 Occurrence of any moderate N-fixing 
plant at sample point 

Y/N LANDFIRE 
  

Ground- 
water 

Catchment mean & point groundwater 
delivery velocity 

m/day MRI-Darcy 
Modelr   

 Catchment mean & point groundwater 
recharge velocity 

m/day MRI-Darcy 
Model   

 Ratio of catchment mean delivery: 
recharge 

dimensionl
ess 

MRI-Darcy 
Model   

 Catchment mean and maximum 
precipitation weighted ground water 
delivery Index 

dimensionl
ess 

MRI-Darcy 
Model 

 
Cs

 Log10 Catchment mean and maximum 
precipitation weighted ground water 
delivery Index 

dimensionl
ess 

MRI-Darcy 
Model 

  

 Catchment mean Base-Flow Index dimensionl
ess 

USGS Gage 
Datat   
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Table A. Continued. 

Type Variable Units Data Source TP TN 

Vegetation Catchment mean of mean 2000-2009 
annual Enhanced Vegetation Index  

dimensionl
ess 

MODISu 
C C 

 Catchment max of mean 2000-2009 
annual Enhanced Vegetation Index 

dimensionl
ess 

MODIS 
  

 Catchment mean of mean 2000-2009 
annual max Enhanced Vegetation 
Index 

dimensionl
ess 

MODIS 

  

 Catchment mean evergreen land 
cover 

% NLCD 
 

C 

 Catchment mean deciduous land 
cover 

% NLCD 
  

 Catchment mean mixed forest land 
cover 

% NLCD 
  

Water 
Chemistry 

Predicted Electric Conductivity μS/cm Olson & 
Hawkins 2012   

 Predicted Acid Neutralization Capacity μeq/L Olson & 
Hawkins 2012   

 Predicted TP μg/L This study 
 Predicted TN μg/L This study 
 Measured TP μg/L This study 
 Measured TN μg/L This study 
b. Derived using method described in section 2.1 of Olson & Hawkins (2012) at a grid 

resolution of 90 x 90 m. See Olson, J. R. and C. P. Hawkins (2012), Predicting natural 
base-flow stream water chemistry in the western United States, Water Resources 
Research, 48: WR011088. 

c. Preliminary integrated geologic map databases for the United States (obtained from 
http://pubs.usgs.gov/of/2005/1351/index_map.htm). 

d. See table 3-1 for sources of water chemistry data. 
e. PRISM climate data. 2 x 2 km resolution grids were used for the 1961–1990 data, and 

800 x 800 m resolution grids were used for the 1971–2000 data. See Daly, C., R. P. 
Neilson, and D. L. Phillips (1994), A statistical topographic model for mapping 
climatological precipitation over mountainous terrain, Journal of Applied Meteorology, 
33, 140-158. 

f. CEC (2006), Ecological regions of North America: toward a common perspective, 
Commission for Environmental Cooperation, Montreal, Quebec. Obtained from 
http://www.epa.gov/wed/pages/ecoregions.htm. 

g. Only Ecoregion 13 was selected for TP model, see text for details. 
h. National Atmospheric Deposition Program National Trends Network (NADP/NTN) 2.5 x 

2.5 km resolution grids (obtained from the NADP website available at 
http://nadp.sws.uiuc.edu/ntn/). 

i. Community Multiscale Air Quality (CMAQ) model output analyzed using the Watershed 
Deposition Tool (available at http://www.epa.gov/AMD/EcoExposure/deposition 
Mapping.html). See Schwede, D. B., R. L. Dennis, and M. A. Bitz (2009), The 
watershed deposition tool: A tool for incorporating atmospheric deposition in water-
quality analyses, Journal of the American Water Resources Association, 45:973-985. 
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j. Natural Resource Conservation Service State Soil Geographic Database (NRCS 
STATSGO) 500 x 500 m resolution grids (obtained from the NRCS website available 
at http://soils.usda.gov/survey/geography/statsgo/). 

k. Only % Alfisol was selected. 
l. IGBP-DIS (1998) SoilData(V.0) A program for creating global soil-property databases, 

IGBP Global Soils Data Task, France. Obtained from The Atlas of the Biosphere: 
http://atlas.sage.wisc.edu/. 

m. National Hydrography Dataset, NHDWaterbody features identified as natural (lakes or 
wetlands), obtained from http://nhd.usgs.gov. 

n. National Land Cover Dataset, 2001, 30 x 30 m resolution grids, obtained from 
http://www.mrlc.gov/. 

o. Calculated from National Elevation Database DEMs at 30 x 30 m resolution (obtained 
from the USGS website available at http://ned.usgs.gov/). 

p. LANDFIRE Refresh 2008 (lf_1.1.0) Biophysical Settings (lf_110bps), 30 x 30 m 
resolution grids (obtained from http://landfire.cr.usgs.gov). 

q. Landscape Ecology, Modeling, Mapping, and Analysis (LEMMA) Modeling Region 200 
March 2010, 30 x 30 m grid resolution (obtained from http://www.fsl.orst.edu/lemma/ 
main.php?project=common &id=mr&model_region=200&ref=nwfp15). 

r. Groundwater flow velocity derived from MRI-Darcy model (Baker, M. E., M. J. Wiley, M. 
L. Carlson, and P. W. Seelbach (2003), A GIS model of subsurface water potential for 
aquatic resource inventory, assessment, and environmental management, 
Environmental Management, 32, 706-719), at a 90x 90 m resolution. 

s. Catchment maximum selected. 
t. Base-flow index values derived from interpolation of the ratio of annual maximum flow 

to minimum flow for all USGS gage data in the region. 
u. MODIS satellite MOD13A1.V4 data collected every 16 d at 500 x 500 m resolution 

from 2000–2009 [Huete et al., 2002]. These data are distributed by the Land 
Processes Distributed Active Archive Center (LP DAAC), located at USGS Earth 
Resources Observation and Science Center (available at http://lpdaac.usgs.gov). 
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Appendix B - Permission-to-Reprint Letter 

We are pleased to grant permission for the use of the material requested for inclusion in 
your thesis. The following non-exclusive rights are granted to AGU authors: 

All proprietary rights other than copyright (such as patent rights).  
The right to present the material orally. 
The right to reproduce figures, tables, and extracts, appropriately cited. 
The right to make hard paper copies of all or part of the paper for 
classroom use. 
The right to deny subsequent commercial use of the paper.  

Further reproduction or distribution is not permitted beyond that stipulated. The copyright 
credit line should appear on the first page of the article or book chapter. The following 
must also be included, “Reproduced by permission of American Geophysical Union.” To 
ensure that credit is given to the original source(s) and that authors receive full credit 
through appropriate citation to their papers, we recommend that the full bibliographic 
reference be cited in the reference list. The standard credit line for journal articles is: 
"Author(s), title of work, publication title, volume number, issue number, citation number 
(or page number(s) prior to 2002), year. Copyright [year] American Geophysical Union."  

If an article was placed in the public domain, in which case the words “Not subject to 
U.S. copyright” appear on the bottom of the first page or screen of the article, please 
substitute “published” for the word “copyright” in the credit line mentioned above. 

Copyright information is provided on the inside cover of our journals.  For permission for 
any other use, please contact the AGU Publications Office at AGU, 2000 Florida Ave., 
N.W., Washington, DC 20009.  

  

Michael 

 

Michael Connolly
Program Manager, Journals 
American Geophysical Union 
+1.202.777.7365 
MConnolly@agu.org 
www.agu.org  

AGU galvanizes a community of Earth and space 
scientists that collaboratively advances and 
communicates science and its power to ensure a 
sustainable future.    
  



147 
 

 

CURRICULUM VITAE 

John Robert Olson 
July 2012 

 
Utah State University 

Department of Watershed Sciences &  
Western Center for Monitoring and Assessment of Freshwater Ecosystems 

5210 Old Main Hill, Logan, UT 84322 
(435) 770-4533 FAX: (435) 797-1871 email: john.olson@usu.edu 

 
Research Interests 

 Applications of spatial & macro ecology to aquatic systems 
 Affects of geology on aquatic systems 
 Aquatic ecosystem ecology 
 Bioassessment 

 
Education 

Ph.D. (2012) Utah State University: Watershed Science 
Dissertation Title: The Influence of Geology and Other 
Environmental Factors on Stream Water Chemistry and Benthic 
Invertebrate Assemblages. 

M.S. (2002) Columbus State University: Environmental Science 
Thesis Title: Using GIS and land use data to select candidate 
reference sites for stream bioassessment. 

B.A. (1986) University of California, Santa Barbara: Geography 
 
Professional Experience 

Postdoctoral Fellow Utah State University – Department of Watershed Sciences: 
(2012- present) Creating nation-wide maps of geologic characteristics, and 
 empirically modeling natural water chemistry for establishing 
 baselines and nutrient criteria. 

Assistant Research U.S. Army Research Laboratory - Battlefield Environment 
Engineering Officer Division, Computational and Information Sciences Directorate: 
(2008 - Present) Level I Science and Technology Manager, responsible for 
 coordinating research efforts between the Army Research 
 Laboratory, supporting universities, and users groups. 

Research Assistant Utah State University – Department of Watershed Sciences: 
(2002- 2012) Improve understanding of the linkages between geology, water
 chemistry, and stream invertebrate assemblages and apply
 this to predict natural conditions to improve both water quality
 and biological assessments.  

 



148 
 

 

Research Assistant Columbus State University – Department of Environmental 
(2000-2001) Science: Ecoregion Reference Site Project, Phase II - 
 Identification and characterization of stream bioassessment 
 reference sites in Georgia. 

Acquisition Officer U.S. Army Infantry Center: Project management & requirement 
(1996-1999)  establishment for body armor, eye protection, & parachute 
 programs.  

Infantry Officer Various assignments, including: Commander responsible for 
(1985-1995) planning & leading 220 man company through 2 deployments; 
(2007-2008) Personnel & Logistics Officer responsible for all human
 resource & logistics planning and execution for 550 man
 battalion; Senior Advisor to Iraqi Army in northern Iraq advising
 the Iraqi Army on training, administration, and logistics, and
 oversaw a $21 million construction and supply budget. 
 
Teaching Experience 

Instructor Utah State University – Department of Military Science:      
(2002 – 2006) Advanced Tactics and Operations (MS 3020), Command and 
 Staff Functions (MS 4010), and Officer Perspectives (MS 
 4020) 

Teaching Assistant Columbus State University – Department of Biology: Principles 
(1999-2000) of Biology (BIOL 1215) 

Teaching Assistant Columbus State University – Department of Environmental 
(1999) Science: Ecological Methods (ENVS 6207) 

Instructor Columbus State University – Department of Military Science: 
(1999-2001) Wilderness Survival (ROTC 1215) & Leadership Values and 
 Skills (ROTC 1216) 
 
Publications 

Journal Articles: 
Olson, J.R., and C.P. Hawkins. 2012. Predicting natural base-flow stream water 

chemistry in the western United States. Water Resources Research WR011088. 

Bennett, S.N., J.R. Olson, J.L. Kershner, and P. Corbett. 2010. Influence of propagule 
pressure and stream characteristics on introgression between native westslope 
cutthroat trout and introduced rainbow trout in British Columbia. Ecological 
Applications 20(1), 263–277. 

Hawkins, C.P., J.R. Olson, and R.A. Hill. 2010. The reference condition: predicting 
benchmarks for ecological and water-quality assessments. Journal of the North 
American Benthological Society 29(1): 312–343. 

Cao, Y., C.P. Hawkins, J. Olson, M.A. Kosterman. 2007. Modeling natural 
environmental gradients improves the accuracy and precision of diatom-based 
indicators. Journal of the North American Benthological Society 26(3): 566-585. 



149 
 

 

Hargett, E.G., J.R. Zumberge, C.P. Hawkins, and J.R. Olson. 2007. Development of a 
RIVPACS-type predictive model for bioassessments of wadeable streams in 
Wyoming. Ecological Indicators 7(4): 807-826. 

Book Chapters: 
Olson, J.R., D.L. Hughes, and M.P. Brossett. 2010. Comparison of bioassessment 

methods. Chapter 2 in Hughes, D.L., M.P. Brossett, J.A. Gore, and J.R. Olson 
(editors). Rapid bioassessment of stream health. CRC Press, Boca Raton, Florida. 

Olson, J.R., D.L. Hughes, J.A. Gore, and M.P. Brossett. 2010. Candidate reference 
conditions. Chapter 4 in Hughes, D.L., M.P. Brossett, J.A. Gore, and J.R. Olson 
(editors). Rapid bioassessment of stream health. CRC Press, Boca Raton, Florida. 

Reports & Manuals: 
Chinnayakanahalli, K., R. Hill, J. Olson, C. Kroeber, D.G. Tarboton, and C.P. Hawkins. 

2006. The multi-watershed delineation tool: GIS software in support of regional 
watershed analyses, users manual. Department of Civil and Environmental 
Engineering and Department of Aquatic, Watershed, & Earth Resources, Utah State 
University.  

Gore, J.A., J.R. Olson, D.L. Hughes, M. Brossett. 2004. Reference conditions for 
wadeable streams in Georgia with a multimetric index for the bioassessment and 
discrimination of reference and impaired streams. Georgia Department of Natural 
Resources, Atlanta, GA. 

Hawkins, C.P., J.D. Ostermiller, M.R. Vinson, R.J. Stevenson, and J.R. Olson. 2003. 
Stream algae, invertebrate, and environmental sampling associated with biological 
water quality assessments field protocols. Department of Aquatic, Watershed, & 
Earth Resources, Utah State University.  

Manuscripts in Review or Revision: 
Olson, J.R., and C.P. Hawkins. In review. Developing site-specific nutrient criteria from 

empirical models. Submitted to Freshwater Science. 

Olson, J.R., and C.P. Hawkins. In revision. An experimental assessment of the effects 
of low total dissolved solids on the survival and distribution of stream 
macroinvertebrates. Submitted to Functional Ecology. 

 
Awards 

University Graduate Research Assistant of the Year (2010) – Utah State University 
Robins Award. 

Collage Graduate Research Assistant of the Year (2010) – Collage of Natural 
Resources, Utah State University. 

Best Student Methods Presentation (2006) - Annual Meeting of the North American 
Benthological Society, Anchorage, AK. 

 


